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Routing and forwarding

Forwarding: data plane

� Reads the Forwarding Information Base (FIB)

⋆ Optimized for fast lookup

� Steers data packets along best paths

⋆ Hop-by-hop forwarding (or through tunnels)

Routing: control plane

� Collects information about the network

⋆ Relies on signalization messages

� Writes best paths in the Routing Information Base (RIB)

⋆ Various metrics: pricing, hop count, link capacity, delay,. . .
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Routing basics

Interdomain routing

� Graph of ASes

� Based on business relationships
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Intra-domain routing protocols

Distance-vector protocols

� Distance information from neighbors

� Slow convergence, poor scalability

Routing Information Protocol (RIP) – IETF1

Interior Gateway Routing Protocol (IGRP) – Cisco

Link-state protocols

� State of each link flooded to all routers

� Fast convergence, better scalability

Open Shortest Path First (OSPF) – IETF1

Intermediate System-to-Intermediate System (IS-IS) – ISO2

1IETF: Internet Engineering Task Force
2ISO: International Organization for Standardization
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Topological changes and routing convergence
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Transient routing inconsistencies
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Experimental setup on a real ISP network
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• 1 IS-IS listener: device recording every topological modification

• 10 Raspberry Pi: vantage points directly connected to RENATER routers

• 8 PlanetLab nodes: server-class machines used for network measurements
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Routing events collected with the IS-IS listener
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From June 6th to 27th and from July 24th to September 1st (61 days)

� 8956 signalization messages changing the topology (146 per day)
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Transient loop illustration on a directed path
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Consequences of transient loops

Direct consequences

Increased transmission delays

Packet losses (exceeded TTL)

Link saturation and congestions

Indirect consequences

Link saturation and congestions

Packet losses

� Worst case: adjacency failure due to loss of signalization
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Timer-based solutions

Ordered FIB updates (oFIB)3

� Removal / weight increment: farthest routers first

� Addition / weight decrement: closest routers first

Prevents all transient loops

Non-incremental deployment

Local delay4

� 1-hop oFIB

Purely local solution

Prevents only local transient loops

3pfr:2007:ofib.
4draft:uloop-delay.
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Other protocol extensions

Tunneling5

� Packet encapsulation during the convergence

Works for both link and node events

Non-incremental deployment

Ships-in-the-Night (SITN)6

� Two concurrent control planes on each router

� Ordered migration from the old process to the new one

Supports network-wide migrations

Non-incremental deployment

Huge overhead for single link or node modifications

5rfc5715.
6vanbever:2012.
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Progressive weight reconfigurations7,8

Theorem

In a stable network, incrementing or decrementing the

weight of a link by 1 leads to a loop-free convergence.

Loop-free weight update sequence for any single-link reconfiguration

Complete network convergence required at each step

From metric 689 to 3236 with 5sec interval ⇒ ~3h30
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7ito:2003.
8pfr:2007:mincr.
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Progressive weight reconfigurations

Relies on a core functionality of link-state routing

� No protocol extension

� Incrementally deployable

Slow down the convergence

Only single link reconfigurations
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Objectives

Improve the progressive reconfiguration solution

� Minimize operational impact (sequence length)

� Provide time-efficient algorithms

Generalize the approach to router-wide reconfigurations

� Minimize operational impact (sequence length)

� Provide time-efficient algorithms

� Prevent routing instabilities
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Minimum link reconfiguration sequences

Generalization to router-wide operations
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Pivot weight increment

For a given destination d , we define for each router a pivot increment, denoted ∆d (x):

∀ x ∈ N, ∆d (x) = C′(x , d)− C(x , d)
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×

x C(x) C′(x) ∆SEAT (x)

SEAT 0 0 0

LOSA 1342 1342 0

SALT 913 913 0

HOUS 3047 3047 0

KANS 2242 2242 0

CHIC 2931 5477 2546

ATLA 3976 4432 456

WASH 3836 6176 2340

NEWY 3931 6453 2522

General definitions:

G(N,E ,w) Directed weighted graph representing the network

C(x , d), C(x) Cost of a shortest path (distance) from x to d before the change

C′(x , d), C′(x) Cost of a shortest path (distance) from x to d after the change
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Delta properties

Let i be an increment performed on the modified link

If i < ∆d (x), x only uses its initial paths towards d

If i = ∆d (x), x uses both its initial and final paths towards d (ECMP)

If i > ∆d (x), x only uses its final paths towards d

i < 456 i = 456 i > 456

HOUS

KANS

CHIC

ATLA

689 + i

HOUS

KANS

CHIC

ATLA

689 + i

HOUS

KANS

CHIC

ATLA

689 + i

Illustration for the router at Atlanta: ∆SEAT (ATLA) = 456
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Delta sequence

Lemma

Given a destination d , the sequence of sorted ∆d (x) + 1 increments for

every router x in N provides a loop- free convergence for this destination.

SEAT

LOSA

SALT

HOUS

KANS

ATLA

WASH

NEWY
CHIC

1342

913

1303

1705

1329

818

1385

1045

905

1000

699

277

689

Increment on

(CHIC, KANS)
|

0

28 / 37



Introduction Context Contributions

Delta sequence

Lemma

Given a destination d , the sequence of sorted ∆d (x) + 1 increments for

every router x in N provides a loop- free convergence for this destination.

SEAT

LOSA

SALT

HOUS

KANS

ATLA

WASH

NEWY
CHIC

1342

913

1303

1705

1329

818

1385

1045

905

1000

699

277

689+457

Increment on

(CHIC, KANS)
|

0

|

457

∆(ATLA) + 1

+457 Atlanta reroutes from
(ATLA, CHIC) to (ATLA, HOUS)

28 / 37



Introduction Context Contributions

Delta sequence

Lemma

Given a destination d , the sequence of sorted ∆d (x) + 1 increments for

every router x in N provides a loop- free convergence for this destination.

SEAT

LOSA

SALT

HOUS

KANS

ATLA

WASH

NEWY
CHIC

1342

913

1303

1705

1329

818

1385

1045

905

1000

699

277

689+2341

Increment on

(CHIC, KANS)
|

0

|

457

∆(ATLA) + 1

|

2341

∆(WASH) + 1

+457 Atlanta reroutes from
(ATLA, CHIC) to (ATLA, HOUS)

+2341 Washington reroutes from
(WASH, CHIC) to (WASH, ATLA)

28 / 37



Introduction Context Contributions

Delta sequence

Lemma

Given a destination d , the sequence of sorted ∆d (x) + 1 increments for

every router x in N provides a loop- free convergence for this destination.

SEAT

LOSA

SALT

HOUS

KANS

ATLA

WASH

NEWY
CHIC

1342

913

1303

1705

1329

818

1385

1045

905

1000

699

277

689+2523

Increment on

(CHIC, KANS)
|

0

|

457

∆(ATLA) + 1

|

2341

∆(WASH) + 1

|

2523

∆(NEWY ) + 1

+457 Atlanta reroutes from
(ATLA, CHIC) to (ATLA, HOUS)

+2341 Washington reroutes from
(WASH, CHIC) to (WASH, ATLA)

+2523 New-York reroutes from
(NEWY , CHIC) to (NEWY , WASH)

28 / 37



Introduction Context Contributions

Delta sequence

Lemma

Given a destination d , the sequence of sorted ∆d (x) + 1 increments for

every router x in N provides a loop- free convergence for this destination.

SEAT

LOSA

SALT

HOUS

KANS

ATLA

WASH

NEWY
CHIC

1342

913

1303

1705

1329

818

1385

1045

905

1000

699

277

689+2547

Increment on

(CHIC, KANS)
|

0

|

457

∆(ATLA) + 1

|

2341

∆(WASH) + 1

|

2523

∆(NEWY ) + 1

|

2547

∆(CHIC) + 1

+457 Atlanta reroutes from
(ATLA, CHIC) to (ATLA, HOUS)

+2341 Washington reroutes from
(WASH, CHIC) to (WASH, ATLA)

+2523 New-York reroutes from
(NEWY , CHIC) to (NEWY , WASH)

+2547 Chicago reroutes from
(CHIC, KANS) to (CHIC, ATLA)

28 / 37



Introduction Context Contributions

Delta sequence

Lemma
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Shorter sequences... but still too long.
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Intervals

Theorem

A monotonic weight update sequence S prevents a transient loop L =
{x1, x2, . . . , x1} for a destination d , if and only if there exists e ∈ S such that:

MIN∀x∈L(∆d (x)) < e < MAX∀x∈L(∆d (x))

The sequence must contain a weight update that makes one router involved

in the loop to completely reroute, while another is still in its initial routing state.
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Intervals

Theorem

A monotonic weight update sequence S prevents a transient loop L =
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Global sequence

Towards Seattle | ]
456

[
2546

∆SEAT (ATLA) ∆SEAT (CHIC)

Towards Salt Lake City | ]
469

[
2559

∆SALT (ATLA) ∆SALT (CHIC)

Towards Kansas City | ]
469

[
2559

∆KANS(ATLA) ∆KANS(CHIC)

Global sequence | ]
469

[
2546

470

Minimum loop-free sequence for the link (CHIC,KANS): S = {470}
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Outline

1 Introduction

2 Context

3 Contributions

Minimum link reconfiguration sequences

Generalization to router-wide operations
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Possible approaches

Link-by-link reconfiguration

Same problem as single-link

Routing instabilities

Sequence length proportional to the node degree

Uniform multi-link reconfiguration

Same problem as single-link (virtual weight on the router)

Routing stability

Long sequences in some cases

Non-uniform multi-link reconfiguration

Allow for minimal sequence length, but. . .

� Multi-dimensional problem

� Possible routing instabilities
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Multi-dimensional pivot increments

a b

c d

e

f g

×

8

6

13

1

2

1

14

1

1

LOOP !

Minimal weight increment vector such that a

node x uses a new path, not via d, to reach a.

∆a(x)[i] = C′(x ,a)− C(x , i ,a)9

9
C(x, i, a): the cost of a shortest path from x to d plus the cost of a shortest simple path from d to a via (d, i)
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1+3
Minimal weight increment vector such that a

node x uses a new path, not via d, to reach a.

∆a(x)[i] = C′(x ,a)− C(x , i ,a)9

∆a(f ) =
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)

=
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5
3

)

9
C(x, i, a): the cost of a shortest path from x to d plus the cost of a shortest simple path from d to a via (d, i)
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Multi-dimensional pivot increments

a b

c d
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f g
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1+5
Minimal weight increment vector such that a

node x uses a new path, not via d, to reach a.

∆a(x)[i] = C′(x ,a)− C(x , i ,a)9

∆a(f ) =

(

14 − (1 + 1 + 1 + 6)
14 − (1 + 1 + 1 + 8)

)

=

(

5
3

)

∆a(g) =

(

15 − 8
15 − 10

)

=

(

7
5

)

9
C(x, i, a): the cost of a shortest path from x to d plus the cost of a shortest simple path from d to a via (d, i)
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Modeling transient loops as constraints

a b

c d

e

f g

×
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L1

∆d
a (f ) =

(

5
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)

∆d
a (g) =

(

7
5

)

(d , c)

(d , b)
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Constraint c associated with a loop L

c := ( min
∀x∈L

(∆(x)), max
∀x∈L

(∆(x)))
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Constraint c associated with a loop L

c := ( min
∀x∈L

(∆(x)), max
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(∆(x)))
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5
3

)
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Constraint c associated with a loop L

c := ( min
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(∆(x)), max
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Modeling transient loops as constraints

Destination b:

c2 =

((

5

19

)

,

(

7

21

))

c3 =

((

−14

0

)

,

(

−2

12

))

Destination c:

c4 =

((

8

−6

)

,

(

12

−2

))

c5 =

((

12

−2

)

,

(

14

0

))

(d , c)

(d , b)
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28

Theorem

A monotonic sequence S prevents a loop L if and only if S

contains a vector that meets the associated constraint c.
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Computing weight update sequences

Greedy Backward Algorithm (GBA)

At each step, retrieve the maximum value
on each index among the lower bounds of
the remaining constraints.

(d , c)

(d , b)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
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Computing weight update sequences

Greedy Backward Algorithm (GBA)

At each step, retrieve the maximum value
on each index among the lower bounds of
the remaining constraints.
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Computing weight update sequences

Greedy Backward Algorithm (GBA)

At each step, retrieve the maximum value
on each index among the lower bounds of
the remaining constraints.

SGBA =

{(

9
4

)

,

(
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)}
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Theorem

Given a set of loop-constraints, GBA computes a minimal sequence
of weight updates preventing all associated convergence loops.
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Minimum link reconfiguration sequences

Generalization to router-wide operations
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Intermediate forwarding changes

a b

c d

e

f g

8

6

13

1

2

1

14

1+9

1+4

SGBA =

{(

9

4

)

,

(

13

20

)}

Triggered by non-uniform weight updates

Routing instabilities

� Increased probability of out-of-order delivery
(disruptive for TCP)
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Intermediate forwarding changes

a b

c d

e

f g

8

6

13

1

2

1

14

1+9

1+4LOOP

SGBA =

{(

9

4

)

,

(

13

20

)}

Triggered by non-uniform weight updates

Routing instabilities

� Increased probability of out-of-order delivery
(disruptive for TCP)

� Additional transient loops
(local to the modified router)
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Local stability conditions

Local stability conditions for d

Let r be the modified router and s ∈

Succd (r) an initial successor of r for d :
{

v [x ] = v [s∗] if x ∈ Succd (r)

v [x ] > v [s∗] − M(r, x, d)10 otherwise

v [b] v [c]
Dest. a > v [c]− 2 –

Dest. b – > v [b]− 14

Dest. c > v [c]− 14 –

(d , c)

(d , b)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

2

4

6

8

10

12

14

16

18

20

22

24

26

28

10
M(r, x, d) = C(r, x, d) − C(r, d)
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Computing a sequence with CPCs

Adjusted GBA

Retrieve the maximum value on each index
among the lower bounds of the remaining
constraints, that meets all the CPCs.

SAGBA =

{ }
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Transient loop prevention alternatives

Dynamic Greedy Backward Heuristic (DGBH)

Sequence length not minimal

Very short sequences in practice

Combination of GBA and local-delay

Minimal sequence length (GBA)

Requires support of local-delay on the modified router

Intermediate disruptions avoidance Sequence

Transient loops Forwarding changes minimality

Uniform ✓ ✓ ✗

AGBA ✓ ✓ ✓

DGBH ✓ ✗ ✗

GBA w/ local delay ✓ ✗ ✓
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Evaluation setup and criteria

Network |N| |E | � Max. degree Weight space

Internet2 9 26 4 4 [277, 1705] (13)

GEANT 22 72 4 6 [1, 20050] (18)

RENATER 70 230 11 13 [1, 1000] (14)

ISP 1 25 55 6 6 [1, 11] (4)

ISP 2 55 200 5 20 [10, 50000] (8)

ISP 3 110 350 11 8 [1, 9999] (32)

ISP 4 150 400 13 9 [1, 9999] (32)

ISP 5 200 800 13 14 [1, 66666] (55)

ISP 6 1200 4000 12 56 [1, 100010] (105)

Evaluation criteria: Update sequence lengths

Computing time efficiency
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Impact of router removal operations
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Affected links ratio on large ISPs

� Loop potentialities depend on the shape of the network

� Removing a single router may affect more than 20% of the links
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Sequence lengths produced by GBA
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Node shutdown operations on large ISPs

� Very short sequences for small networks

� Reasonable length for most sequences even in large networks
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Sequence length distribution of GBA alternatives
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Sequence length distribution on ISP6

� Sequences of same length for GBA and DGBH in most cases

� AGBA sequences significantly shorter than uniform ones, for the

same routing stability
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Computing times

Network Min Max Mean 3rd quartile 9th decile

Internet2 0.06 ms 0.06 ms 0.06 ms 0.06 ms 0.06 ms

Geant 0.21 ms 0.35 ms 0.28 ms 0.30 ms 0.33 ms

ISP1 0.34 ms 0.51 ms 0.41 ms 0.47 ms 0.51 ms

ISP2 1.43 ms 2.68 ms 1.96 ms 2.08 ms 2.67 ms

Renater 0.35 ms 2.68 ms 1.28 ms 1.48 ms 1.78 ms

ISP3 0.49 ms 10.91 ms 6.08 ms 7.25 ms 7.75 ms

ISP4 0.99 ms 18.04 ms 10.18 ms 12.07 ms 12.95 ms

ISP5 0.64 ms 49.63 ms 23.80 ms 30.01 ms 34.64 ms

ISP6 3.63 ms 2.15 s 1.40 s 1.70 s 1.77 s

� Negligible computing times (< 50 ms) even for large ISPs11

� Still reasonable for very large networks12

11ISP5: 200 nodes / 800 edges
12ISP6: 1200 nodes / 8000 edges
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Conclusion

X Transient loops impact evaluation

� Loops do occur and impact the traffic in ISP networks

X Improvement of the existing approach

� Sequence minimality with polynomial time algorithms

� Efficient implementation

X Generalization to node-wide operations

� Practical solutions to deal with routing instabilities
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Perspectives

Evaluate the approach on a production network

(delay between updates, impact on inter-domain routing, . . . )

Devise methods to deal with longest sequences

(skip some elements, ignore destinations, . . . )

Assess the impact of intermediate changes on the traffic

Reduce sequence lengths by allowing negative weight updates

Investigate complexity of the intermediate transient loop problem

Extend the approach to different contexts

(multicast, wireless communications,. . . )
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Thank you for your attention.
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