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Talk outlines

1.Context and multi-path routing motivations

2.Graph and transverse paths terminology 

3.Transverse paths properties

4.The multi-Dijkstra-Transverse (mDT) algorithm

5.Evaluation results
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Multi-path routing objectives
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Shortest path

Goals of the path diversity:
1. Reliability : restoration time decreases
2. Load balancing (in the core or at the edges) : 

throughput increases, latency decreases 
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Context

Intra-domain multi-path routing
Link state protocol (e.g, OSPF or IS-IS):
1.Link state advertisements flooding
2.Additive metric (e.g, the sum of the inverse of the link 

capacities or the number of hops...)
3.Hop by hop forwarding

 For each calculating node, the root of the 
Shortest Path Tree (SPT), the goal is to 
validate alternate next hops guaranteeing the 
correctness of the forwarding                      
(the distributed composition of next hops along the 
route does not induce rooting loops) 4



Goals and constraints
•We want:

◦ Load balancing (for traffic engineering)
◦ Reliability (for fast reroute)

...but we also want to ensure:
◦ Loop free routing (correctness property)
◦ Incremental deployment (without message exchange)
◦ Low time and memory complexity overhead compared 
to Dijkstra 
➡Avoid the computation of the SPT of each neighbor 
router (kD): the time complexity of this approach is 
proportional to the calculating router degree, k
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Simplest loop-free rules
Rules to avoid router level loops

• Equal Cost Multi-path Routing (local vision)
• Downstream Criteria (one hop vision) 
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How to know the costs of the neighbors ?
1.Send cost queries to the neighborhood (~ distance vector protocol) ?
2.Compute the SPT of each neighbor (kD) ?
3.Compute candidate paths with distinct outgoing interfaces thanks to 

an enhanced shortest path first (SPF) algorithm ?



Graph terminology
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Path terminology
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•A 1-transverse path is a path with 1 transverse edge and 
no internal edges, it can take three forms:

1.Simple transverse path: A best path (SPT edges)+ 1 transverse edge
2.Backward transverse path: A simple transverse path + n backward 
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3.Forward transverse path: [A simple transverse path or a backward 
transverse path] + n forward SPT edges (n>0)
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Transverse path properties
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Lemma 1: If there exists an alternate path linking a given pair (s,d), 
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The mDT algorithm
 mDT is a variant of the Dijkstra Transverse (DT) algorithm:

 It computes all 1-transverse paths                                    
➠ at least 2 candidate paths for all pairs (src,dst) if the 
graph is 2-edge connected

 It computes all best equal cost paths and all paths with 
one internal edge (...whereas DT does not)

 Its time complexity, O(k|E|+|N|log|N|+k|N|), is slightly greater 
than the one of DT, O(|E|+|N|log|N|+k|N|) , but lower than 
the one of kD, O(k(E+|N|log|N|))

 By design, mDT computes candidate alternate paths whose 
costs are close to the best one (➠ loop-free rule)

10



mDT basics
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•Two consecutive phases:
1.A enhanced version of the Dijkstra algorithm to compute:
➡Shortest paths (primary next hops)
➡All alternate equal shortest paths (including paths with n transverse 
edges, n>0, similarly to ECMP)
➡Best simple transverse paths per neighbor
➡Best path with one internal edge per neighbor
★Complexity : O(|N|log|N|+k|E|)

2.A backward/forward composition algorithm to compute:
➡Best backward transverse paths per neighbor
➡Best forward transverse paths per neighbor
★Complexity : O(k|N|)

•mDT computes a matrix containing an upper-bound on 
the cost for each destination and via each neighbor node

•Each entry of the matrix corresponds to a best 
transverse path implicitly recorded as a triplet:                                        
l                     cost/neighbor/destination



Evaluation results
Analysis setup:
1.NS-2 simulator implementation (available online)
2.Topologies from IGEN generator, Rocketfuel data set 

and real ones
3.Comparison between ECMP, kD, DT and mDT algorithm
4.Loop-free rule : the downstream criteria

Analysis criteria:
1.Time complexity (instructions needed to manipulate the 

Priority Queue: extract_min, delete_key, update_key)
2.Number of candidate next hops
3.Number of validated next hops (loop-free)

12



Generated topologies results
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Real and inferred topologies
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➡mDT is able to perform the computation of almost the 
same number of validated (loop-free) next hops than kD 
but with a lower time complexity 

➡The save in term of time complexity is proportional to 
the existing physical path diversity, e.g, the more the 
network is connected, the more the overhead in time 
complexity of kD becomes useless
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Conclusion
The «DT suite» allows to limit the time 
complexity of the path computation phase with 
minimal guarantees:

1.Graph property: At least one candidate alternate next hop 
is computed between a pair (src,dst) if the primary link is 
not a bridge link

2.Evaluation results: mDT performs path diversity results 
similar to kD (or with the Topkis’s algorithm) but with a 
lower time complexity

➡mDT can be incrementally deployed to 
determine a set of paths suitable for hop by 
hop multi-path forwarding or for local fast 
reroute schemes
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Thank you
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Current work
Develop improved versions of DT to take into 
account internal edges in paths computation     
➠ real alternate best cost calculation

Thanks to the property of paths containing at 
most one transverse edge, we are able to: 
◦ compute the two shortest paths with a distinct first hop
◦ compute two valid paths using a given loop-free criteria (DC, LFA)

• To the best of our knowledge, these algorithms 
are the lowest time complexity procedures 
existing to compute two (valid) first hop 
disjoint paths

17


