
Low Complexity Link-state
Multi-path Routing

Global Internet 2009
Infocom 2009 workshop

Rio de Janeiro, Brazil
24 April 2009

Pascal Mérindol

Université catholique de Louvain
Louvain-la-Neuve, Belgium

Jean Jacques Pansiot
Stéphane Cateloin

Université de Strasbourg
Strasbourg, France

Talk outlines

1.Context and multi-path routing motivations

2.Graph and transverse paths terminology

3.Transverse paths properties

4.The multi-Dijkstra-Transverse (mDT) algorithm

5.Evaluation results

2

Multi-path routing objectives

3

Src Dst

Multi-path routing objectives

3

Shortest path

Src Dst

Multi-path routing objectives

3

Shortest path

Alternate path 1Src Dst

Multi-path routing objectives

3

Shortest path

Alternate path 1

Alternate path 2

Src Dst

Multi-path routing objectives

3

Shortest path

Goals of the path diversity:

Alternate path 1

Alternate path 2

Src Dst

Multi-path routing objectives

3

Shortest path

Goals of the path diversity:
1. Reliability : restoration time decreases

Alternate path 1

Alternate path 2

Src Dst

Multi-path routing objectives

3

Shortest path

Goals of the path diversity:
1. Reliability : restoration time decreases
2. Load balancing (in the core or at the edges) :

throughput increases, latency decreases

Alternate path 1

Alternate path 2

Src Dst

Context

Intra-domain multi-path routing
Link state protocol (e.g, OSPF or IS-IS):
1.Link state advertisements flooding
2.Additive metric (e.g, the sum of the inverse of the link

capacities or the number of hops...)
3.Hop by hop forwarding

 For each calculating node, the root of the
Shortest Path Tree (SPT), the goal is to
validate alternate next hops guaranteeing the
correctness of the forwarding
(the distributed composition of next hops along the
route does not induce rooting loops) 4

Goals and constraints
•We want:

◦ Load balancing (for traffic engineering)
◦ Reliability (for fast reroute)

...but we also want to ensure:
◦ Loop free routing (correctness property)
◦ Incremental deployment (without message exchange)
◦ Low time and memory complexity overhead compared
to Dijkstra
➡Avoid the computation of the SPT of each neighbor
router (kD): the time complexity of this approach is
proportional to the calculating router degree, k

5

Simplest loop-free rules
Rules to avoid router level loops

• Equal Cost Multi-path Routing (local vision)
• Downstream Criteria (one hop vision)

6

Router level loop

 d
ds

S V1

V0

V2

D

10, via V0
8

7

10
1

4

2

10, via V0
11, via V1
11, via V2

Simplest loop-free rules
Rules to avoid router level loops

• Equal Cost Multi-path Routing (local vision)
• Downstream Criteria (one hop vision)

6

Router level loop

 d
ds

S V1

V0

V2

D

10, via V0
8

7

10
1

4

2

10, via V0
11, via V1
11, via V2

Simplest loop-free rules
Rules to avoid router level loops

• Equal Cost Multi-path Routing (local vision)
• Downstream Criteria (one hop vision)

6

Router level loop

 d
ds

S V1

V0

V2

D

10, via V0
8

7

10
1

4

2

10, via V0
11, via V1
11, via V2

How to know the costs of the neighbors ?

Simplest loop-free rules
Rules to avoid router level loops

• Equal Cost Multi-path Routing (local vision)
• Downstream Criteria (one hop vision)

6

Router level loop

 d
ds

S V1

V0

V2

D

10, via V0
8

7

10
1

4

2

10, via V0
11, via V1
11, via V2

How to know the costs of the neighbors ?
1.Send cost queries to the neighborhood (~ distance vector protocol) ?

Simplest loop-free rules
Rules to avoid router level loops

• Equal Cost Multi-path Routing (local vision)
• Downstream Criteria (one hop vision)

6

Router level loop

 d
ds

S V1

V0

V2

D

10, via V0
8

7

10
1

4

2

10, via V0
11, via V1
11, via V2

How to know the costs of the neighbors ?
1.Send cost queries to the neighborhood (~ distance vector protocol) ?
2.Compute the SPT of each neighbor (kD) ?

Simplest loop-free rules
Rules to avoid router level loops

• Equal Cost Multi-path Routing (local vision)
• Downstream Criteria (one hop vision)

6

Router level loop

 d
ds

S V1

V0

V2

D

10, via V0
8

7

10
1

4

2

10, via V0
11, via V1
11, via V2

How to know the costs of the neighbors ?
1.Send cost queries to the neighborhood (~ distance vector protocol) ?
2.Compute the SPT of each neighbor (kD) ?
3.Compute candidate paths with distinct outgoing interfaces thanks to

an enhanced shortest path first (SPF) algorithm ?

Graph terminology

7

•The edges of a graph can be partitioned into 3
categories (considering both directions):
1.SPT edges: links belonging to the SPT
2.Transverses edges: links between branches
3.Internal edges : links between nodes of the same branch

Root node s

Graph terminology

7

•The edges of a graph can be partitioned into 3
categories (considering both directions):
1.SPT edges: links belonging to the SPT
2.Transverses edges: links between branches
3.Internal edges : links between nodes of the same branch

Root node s

Graph terminology

7

•The edges of a graph can be partitioned into 3
categories (considering both directions):
1.SPT edges: links belonging to the SPT
2.Transverses edges: links between branches
3.Internal edges : links between nodes of the same branch

Root node s

Graph terminology

7

•The edges of a graph can be partitioned into 3
categories (considering both directions):
1.SPT edges: links belonging to the SPT
2.Transverses edges: links between branches
3.Internal edges : links between nodes of the same branch

Root node s

5 branches: 5 subgraphs, each containing a set of primary paths
having the same primary next hop

Graph terminology

7

•The edges of a graph can be partitioned into 3
categories (considering both directions):
1.SPT edges: links belonging to the SPT
2.Transverses edges: links between branches
3.Internal edges : links between nodes of the same branch

Root node s

5 branches: 5 subgraphs, each containing a set of primary paths
having the same primary next hop

Path terminology

8

•A 1-transverse path is a path with 1 transverse edge and
no internal edges, it can take three forms:

1.Simple transverse path: A best path (SPT edges)+ 1 transverse edge
2.Backward transverse path: A simple transverse path + n backward
SPT edges (n>0)
3.Forward transverse path: [A simple transverse path or a backward
transverse path] + n forward SPT edges (n>0)

1

2

2
1

1

1
2

Root node

Path terminology

8

•A 1-transverse path is a path with 1 transverse edge and
no internal edges, it can take three forms:

1.Simple transverse path: A best path (SPT edges)+ 1 transverse edge
2.Backward transverse path: A simple transverse path + n backward
SPT edges (n>0)
3.Forward transverse path: [A simple transverse path or a backward
transverse path] + n forward SPT edges (n>0)

SPT edges

1

2

2
1

1

1
2

Root node

Path terminology

8

•A 1-transverse path is a path with 1 transverse edge and
no internal edges, it can take three forms:

1.Simple transverse path: A best path (SPT edges)+ 1 transverse edge
2.Backward transverse path: A simple transverse path + n backward
SPT edges (n>0)
3.Forward transverse path: [A simple transverse path or a backward
transverse path] + n forward SPT edges (n>0)

SPT edges

1

2

2
1

1

1
2

Root node

Transverse edge Internal edge

Path terminology

8

•A 1-transverse path is a path with 1 transverse edge and
no internal edges, it can take three forms:

1.Simple transverse path: A best path (SPT edges)+ 1 transverse edge
2.Backward transverse path: A simple transverse path + n backward
SPT edges (n>0)
3.Forward transverse path: [A simple transverse path or a backward
transverse path] + n forward SPT edges (n>0)

SPT edges

1

2

2
1

1

1
2

Root node

Transverse edge Internal edge

Path terminology

8

•A 1-transverse path is a path with 1 transverse edge and
no internal edges, it can take three forms:

1.Simple transverse path: A best path (SPT edges)+ 1 transverse edge
2.Backward transverse path: A simple transverse path + n backward
SPT edges (n>0)
3.Forward transverse path: [A simple transverse path or a backward
transverse path] + n forward SPT edges (n>0)

SPT edges

1

2

2
1

1

1
2

Root node

Transverse edge Internal edge

Path terminology

8

•A 1-transverse path is a path with 1 transverse edge and
no internal edges, it can take three forms:

1.Simple transverse path: A best path (SPT edges)+ 1 transverse edge
2.Backward transverse path: A simple transverse path + n backward
SPT edges (n>0)
3.Forward transverse path: [A simple transverse path or a backward
transverse path] + n forward SPT edges (n>0)

SPT edges

1

2

2
1

1

1
2

Root node

Transverse edge Internal edge

Path terminology

8

•A 1-transverse path is a path with 1 transverse edge and
no internal edges, it can take three forms:

1.Simple transverse path: A best path (SPT edges)+ 1 transverse edge
2.Backward transverse path: A simple transverse path + n backward
SPT edges (n>0)
3.Forward transverse path: [A simple transverse path or a backward
transverse path] + n forward SPT edges (n>0)

SPT edges

1

2

2
1

1

1
2

Root node

Transverse edge Internal edge

Path terminology

8

•A 1-transverse path is a path with 1 transverse edge and
no internal edges, it can take three forms:

1.Simple transverse path: A best path (SPT edges)+ 1 transverse edge
2.Backward transverse path: A simple transverse path + n backward
SPT edges (n>0)
3.Forward transverse path: [A simple transverse path or a backward
transverse path] + n forward SPT edges (n>0)

SPT edges

1

2

2
1

1

1
2

Root node

Transverse edge Internal edge

Transverse path properties

9

Lemma 1: If there exists an alternate path linking a given pair (s,d),
then there exists a path with only one transverse edge which is
(one of) the shortest alternate path linking s and d

Lemma 2: If there exists a path with one transverse edge linking a
given pair (s,d) and if the existence of edges is symmetric, then
there exists a 1-transverse path linking s and d

SPT edges

1

2

2
1

1
1

2

Root node s d

1
1

Transverse edge Internal edge

Transverse path properties

9

Lemma 1: If there exists an alternate path linking a given pair (s,d),
then there exists a path with only one transverse edge which is
(one of) the shortest alternate path linking s and d

Lemma 2: If there exists a path with one transverse edge linking a
given pair (s,d) and if the existence of edges is symmetric, then
there exists a 1-transverse path linking s and d

SPT edges

1

2

2
1

1
1

2

Root node s d

1
1

Transverse edge Internal edge

Transverse path properties

9

Lemma 1: If there exists an alternate path linking a given pair (s,d),
then there exists a path with only one transverse edge which is
(one of) the shortest alternate path linking s and d

Lemma 2: If there exists a path with one transverse edge linking a
given pair (s,d) and if the existence of edges is symmetric, then
there exists a 1-transverse path linking s and d

SPT edges

1

2

2
1

1
1

2

Root node s d

1
1

Transverse edge Internal edge

Transverse path properties

9

Lemma 1: If there exists an alternate path linking a given pair (s,d),
then there exists a path with only one transverse edge which is
(one of) the shortest alternate path linking s and d

Lemma 2: If there exists a path with one transverse edge linking a
given pair (s,d) and if the existence of edges is symmetric, then
there exists a 1-transverse path linking s and d

SPT edges

1

2

2
1

1
1

2

Root node s d

1
1

Transverse edge Internal edge

The mDT algorithm
 mDT is a variant of the Dijkstra Transverse (DT) algorithm:

 It computes all 1-transverse paths
➠ at least 2 candidate paths for all pairs (src,dst) if the
graph is 2-edge connected

 It computes all best equal cost paths and all paths with
one internal edge (...whereas DT does not)

 Its time complexity, O(k|E|+|N|log|N|+k|N|), is slightly greater
than the one of DT, O(|E|+|N|log|N|+k|N|) , but lower than
the one of kD, O(k(E+|N|log|N|))

 By design, mDT computes candidate alternate paths whose
costs are close to the best one (➠ loop-free rule)

10

mDT basics

11

•Two consecutive phases:
1.A enhanced version of the Dijkstra algorithm to compute:
➡Shortest paths (primary next hops)
➡All alternate equal shortest paths (including paths with n transverse
edges, n>0, similarly to ECMP)
➡Best simple transverse paths per neighbor
➡Best path with one internal edge per neighbor
★Complexity : O(|N|log|N|+k|E|)

2.A backward/forward composition algorithm to compute:
➡Best backward transverse paths per neighbor
➡Best forward transverse paths per neighbor
★Complexity : O(k|N|)

•mDT computes a matrix containing an upper-bound on
the cost for each destination and via each neighbor node

•Each entry of the matrix corresponds to a best
transverse path implicitly recorded as a triplet:
l cost/neighbor/destination

Evaluation results
Analysis setup:
1.NS-2 simulator implementation (available online)
2.Topologies from IGEN generator, Rocketfuel data set

and real ones
3.Comparison between ECMP, kD, DT and mDT algorithm
4.Loop-free rule : the downstream criteria

Analysis criteria:
1.Time complexity (instructions needed to manipulate the

Priority Queue: extract_min, delete_key, update_key)
2.Number of candidate next hops
3.Number of validated next hops (loop-free)

12

Generated topologies results

13

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 20 40 60 80 100 120 140 160 180 200

N
um

be
r o

f i
ns

tru
ct

io
ns

Number of nodes

EC
DT

mDT
kD

|N|2

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

20 40 60 80 100 120 140 160 180 200

Va
lid

at
io

n
ra

tio

Number of nodes

EC/kD
DT/kD

mDT/kD

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

20 40 60 80 100 120 140 160 180 200

Va
lid

at
io

n
ra

tio

Number of nodes

EC/kD
DT/kD

mDT/kD

Time complexity (array list evaluation)

Generated topologies results

13

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

20 40 60 80 100 120 140 160 180 200

C
om

pu
ta

tio
n

ra
tio

Number of nodes

EC/kD
DT/kD

mDT/kD

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

20 40 60 80 100 120 140 160 180 200

Va
lid

at
io

n
ra

tio

Number of nodes

EC/kD
DT/kD

mDT/kD

Candidate next hops

Generated topologies results

13

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

20 40 60 80 100 120 140 160 180 200

Va
lid

at
io

n
ra

tio

Number of nodes

EC/kD
DT/kD

mDT/kD

Loop free next hops

Real and inferred topologies

14

➡mDT is able to perform the computation of almost the
same number of validated (loop-free) next hops than kD
but with a lower time complexity

➡The save in term of time complexity is proportional to
the existing physical path diversity, e.g, the more the
network is connected, the more the overhead in time
complexity of kD becomes useless

Real and inferred topologies

14

➡mDT is able to perform the computation of almost the
same number of validated (loop-free) next hops than kD
but with a lower time complexity

➡The save in term of time complexity is proportional to
the existing physical path diversity, e.g, the more the
network is connected, the more the overhead in time
complexity of kD becomes useless

Real and inferred topologies

14

➡mDT is able to perform the computation of almost the
same number of validated (loop-free) next hops than kD
but with a lower time complexity

➡The save in term of time complexity is proportional to
the existing physical path diversity, e.g, the more the
network is connected, the more the overhead in time
complexity of kD becomes useless

Real and inferred topologies

14

➡mDT is able to perform the computation of almost the
same number of validated (loop-free) next hops than kD
but with a lower time complexity

➡The save in term of time complexity is proportional to
the existing physical path diversity, e.g, the more the
network is connected, the more the overhead in time
complexity of kD becomes useless

Conclusion
The «DT suite» allows to limit the time
complexity of the path computation phase with
minimal guarantees:

1.Graph property: At least one candidate alternate next hop
is computed between a pair (src,dst) if the primary link is
not a bridge link

2.Evaluation results: mDT performs path diversity results
similar to kD (or with the Topkis’s algorithm) but with a
lower time complexity

➡mDT can be incrementally deployed to
determine a set of paths suitable for hop by
hop multi-path forwarding or for local fast
reroute schemes

15

Thank you

16

Current work
Develop improved versions of DT to take into
account internal edges in paths computation
➠ real alternate best cost calculation

Thanks to the property of paths containing at
most one transverse edge, we are able to:
◦ compute the two shortest paths with a distinct first hop
◦ compute two valid paths using a given loop-free criteria (DC, LFA)

• To the best of our knowledge, these algorithms
are the lowest time complexity procedures
existing to compute two (valid) first hop
disjoint paths

17

