

Low Complexity Link State Multipath Routing
Pascal Mérindol

Université Catholique de Louvain (UCL)
Louvain la Neuve, Belgium

pascal.merindol@uclouvain.be

Jean-Jacques Pansiot and Stéphane Cateloin
LSIIT-CNRS, Université de Strasbourg (UdS)

Illkirch, France
{pansiot,cateloin}@unistra.fr

Abstract—Link state routing protocols such as OSPF or IS-IS
currently use only best paths to forward IP packets throughout a
domain. The optimality of sub-paths ensures consistency ofhop
by hop forwarding although paths, calculated using Dijkstra’s
algorithm, are recursively composed. According to the linkmet-
ric, the diversity of existing paths can be underestimated using
only best paths. Hence, it reduces potential benefits of multipath
applications such as load balancing and fast rerouting. In this
paper, we propose a low time complexity multipath computation
algorithm able to calculate at least two paths with a different
first hop between all pairs of nodes in the network if such next
hops exist. Using real and generated topologies, we evaluate
and compare the complexity of our proposition with several
techniques. Simulation results suggest that the path diversity
achieved with our proposition is approximatively the same that
the one obtained using consecutive Dijsktra computations,but
with a lower time complexity.

I. I NTRODUCTION

Routing is one of the key components of the Internet.
Despite the potential benefits of multipath routing (e.g. [5]
or [6]), most backbone networks still use unipath routing
such as OSPF or IS-IS or their ECMP feature (Equal Cost
MultiPath). With these routing protocols, the forwarding only
changes upon topology variations and not upon traffic vari-
ations. Dynamic multipath routing (e.g. [16], [15], [8] or
[3]) is able to provide several services such as load bal-
ancing, to reduce delays and improve throughput, and fast
rerouting schemes in case of failures. The reliability of an
IP network against failures and congestions depends on the
reaction time necessary for the convergence of the underlying
routing protocol. Proactive multiple paths calculation allows
to accelerate this reaction time: pre-computed alternate paths
can be directly used as backup paths without waiting for the
routing protocol convergence. This proactive mechanism can
improve the network response in case of troubles where such
backup paths exist. To provide these functionalities, the set
of forwarding alternatives has to be large enough to achieve
a good path diversity. However, current routers only support
ECMP. This feature corresponds to a simple variant of Dijkstra
where equal cost paths are inherited along the shortest pathtree
(SPT). The optimality condition of sub-paths computed with
ECMP restricts the number of loopfree paths and so reduces
potential advantages of multipath routing.
In order to use multiple unequal cost paths between a pair of
ingress and egress routers, there are two forwarding possibil-
ities. On the one hand, source multipath forwarding schemes

can use MPLS with a path signaling protocol (such asRSVP-
TE [4]) to establish any desired paths. With this kind of
approach, either the deployment is generalized in the whole
network and does not scale very well (proportional to the
square of the number of routers), either the reaction time can
be as long as the notification delay on the return path.
On the other hand, multipath routing protocols with hop by
hop forwarding needs to validate a set of next hops such that
the recursive composition between neighbor routers does not
create forwarding loops (see [14], [15] and [17]). The first
limitation is the complexity in time, space and the number of
messages exchanged to compute and validate loopfree paths.
In this paper, we propose a simple hop by hop scheme that
does not require a signaling protocol to validate loopfree
paths. If the validation procedure, whose goal is to verify the
absence of loops, is local (without exchanging any message)
and does not involve all routers, then the deployment can be
incremental. Our approach is equivalent to ECMP in terms of
time, space and message exchange complexity but allows to
compute a greater diversity of forwarding alternatives.
In this paper, we propose the following contributions:

- a new graph decomposition analysis.
- two variants of the Dijkstra algorithm: Dijkstra-

Transverse (DT) and multi-Dijkstra-Transverse (mDT).
- a proof that they compute at least two distinct next

hops from the calculating node towards each node of
the graph if such next hops exist.

- an evaluation of the efficiency and the complexity of our
proposition compared to existing techniques.

This paper is organized as follows. Section II summarizes
basic multipath routing notions and related work. Section III
introduces our algorithms and their properties. Section IV
presents our simulation results to underline the relevanceand
the low time complexity of our proposition.

II. N OTATIONS AND CONTEXT

Table I lists the graph definitions used in the paper. No-
tations are related to the multipath hop by hop forwarding
context: computed paths are loopfree and first hop distinct.We
order paths according to an additive metricC, and we focus
on the best paths having distinct first hops. To distinguish
equal cost paths, we consider the lexicographical order of first
hops. For simplicity reasons we do not consider the multigraph
issue: a first hop is equivalent to a successor node, the next
hop. The valuationw denotes the weight of each directed link

TABLE I
NOTATIONS

Notations Definitions

G(N, E, w) oriented graphG with a set of nodesN , a set of
edgesE and a strictly positive valuation of edgesw.

e = (e.x, e.y) edgee ∈ E connecting nodex to nodey

we assume thate−1 = (e.y, e.x) ∈ E.
k−(x), k+(x) incoming and outgoing degrees of nodex.
succ(x) set of neighbors of nodex (|succ(x)| = k+(x)).
Pj(s, d) = jth best loopfree path linkings to d. Recursively,
(e1, ..., em) this is the best path whose first edge is distinct from

the first edge of thej − 1 best paths.
Cj(s, d) = cost of the pathPj(s, d)∑m

i=1
w(ei) 1 ≤ j ≤ k+(s), 0 < m < |N |.

NHj(s, d) jth best next hop computed ons towardsd. This is
the first hope1.y of Pj(s, d).

used by the routing protocol. Let us define a safety property
for distributed routing policies.

Definition: Loopfree routing property at the router level.
A multipath routing protocol is loopfree if it always converges
to a stable state such that when any router s forwards a packet
to any next hop v towards any destination d, this packet never
comes back to s.

With hop by hop link state multipath routing using multiple
unequal cost paths, two phases may be necessary to ensure
loopfree routing: a path computation algorithm and a valida-
tion process. We do not consider validation processes usinga
signaling protocol (such as it can be done with distance vector
routing messages, see [15] for example).
With unipath or ECMP routing, the sub-path optimality con-
dition guarantees the correctness of next hop composition.To
increase the number of valid alternatives, the simplest rule to
select a next hopv on a routers (such thatv ∈ succ(s)) is
the downstream criteria which can be expressed as follows:

C1(v, d) < C1(s, d) (1)

This rule is referenced in the IS-IS standard ISO 8473, is
used in OSPF-OMP [14] and is denoted LFI in [15] (with the
particularity of avoiding routing loops even in transient periods
of topology changes). This rule is calledone hop vision in
[17] where Yang and Wetherall introduce a set of rules whose
flexibility allows to increase the number of valid neighbors
thanks to atwo hops vision. This set of rules is more complex:
the forwarding mechanism is specific to the incoming interface
and allows forwarding loops at the router level but not at the
link level. Thus, a packet is never forwarded through the same
link but it can enter the same router twice.
Authors suggests that minimizing the queue level should be
the primary goal, however delays can increase if paths contain
several times the same router and this unnecessarily consumes
more resources (routers CPU, links bandwidth,...). We consider
that the queue usage is not the only resource to save.
In order to perform loopfree routing, the validation process
needs to compute a set of candidate next hops. A candidate
next hop is a first hop of a computed path which is not yet

validated for loopfree routing. On a given calculating node
(a root nodes), the simplest way to obtain an exhaustive
candidate set is to compute the SPT of all neighbor nodes.
Thus, routers can use the best costs information of its neigh-
borhood. This approach is denotedkD in the following, and
our analysis uses this technique as a reference. The complexity
of kD depends on the number of neighbors:k+(s)+1 instances
of the Dijkstra algorithm are necessary to compute the local
and neighborhood best costs. If a router has a large number
of interfaces, the computation time can be too long. Even if
this calculation is typically done offline, when a congestion
or a failure occurs during this period, the router is unable to
perform the traffic switching.
Another way is to use an enhanced SPT algorithm to locally
compute multiple paths for each destination. For example,
algorithms and implementations presented in [12] are designed
to compute the set ofK-shortest loopfree paths, but do not
guarantee that these paths are first hop distinct. TheK-shortest
loopfree paths problem is not suited for simple hop by hop
forwarding. Indeed, in order to forward packets via these
K explicit paths, a signaling protocol is necessary to mark
routes from the ingress router towards each egress router. Here
we focus on distinct first hops computation (K ≤ k+(s)),
and paths are implicity stored as candidate next hops. The
objective of our approach is to compute a set of loopfree
first hop disjoint paths with a lower complexity thankD.
For this purpose, we calculate a set of costs{Cj(s, d)} ∀d∈N

containing at least two entries for each destination noded in
the graph. With an enhanced SPT algorithm able to compute
such a set, rule (1) becomes:

Cj(s, d)− w(s, v) < C1(s, d) (2)

If v = NHj(s, d) satisfies rule (2), then(s, v) is a valid next
hop. Thus, thejth next hopv can be used bys to reachd
and it satisfies the loopfree routing property at the router level.
Note that:∀d ∈ N, Cj(s, d)− w(s, v) ≥ C1(v, d).
To sum up, our approach follows these three steps:

1) it uses an unmodified link state routing protocol such as
OSPF or IS-IS to obtain topological information,

2) it uses a multipath computation algorithm (see section
III) instead of Dijkstra to compute candidate next hops,

3) it uses condition (2) to select valid next hops.

III. C ANDIDATE NEXT HOPS COMPUTATION

This section describes our path computation algorithms and
an original edge partition analysis. Given a root nodes, the
set of edges of a graph can be partitioned into four subsets
(we consider both directions of each edge):

- Edges corresponding to first hops of primary paths.
- Edges belonging to sub-trees corresponding tobranches.
- Transverse edges connecting two distinct branches or

connecting the roots and a branch without being the
first hop of a primary path.

- Internal edges linking nodes of the same branch without
belonging to this branch.

TABLE II
MULTIPATH TERMINOLOGY

Terms Definitions

branchh(s) subtree of the SPT rooted at a neighborh of s
transverse edge an edge is transverse if it connects

two distinct branchesbranchh(s) and
branchh′(s) or if it connects the roots

and a noden 6= h in a branchh(s)
internal edge an edgee is internal if it connects two nodes

e.x ande.y belonging to a givenbranchh(s)
and such thate /∈ branchh(s)

k-transverse path a path is k-transverse if it contains exactly
k transverse edges and no internal edge

Simple a 1-transverse path(e1, ..., em)
transverse path such that(e1, ..., em−1) = P1(s, em−1.y)
P ∈ Pt(s, d) andem is a transverse edge (em.y = d)
Backward a 1-transverse path(e1, ..., em) such that for
transverse path a z (1≤z<m), (e1, ..., ez) ∈ Pt(s, ez.y)
P ∈ Pbt(s, d) and (e−1

m , ..., e−1
z+1) = P1(d, ez+1.y)

Forward a 1-transverse path(e1, ..., em) such that for
transverse path a z, (e1, ..., ez) ∈ Pt(s, ez.y) ∨ Pbt(s, ez.y)
P ∈ Pft(s, d) and (ez+1, ..., em) = P1(ez+1.x, d)

s

d

c

b

n

1 2

3

4

5

6 7

8

9

10

11

i

t1

t2

internal edge

transverse edge

branch edge

first hop edge

Fig. 1. Edge partition example

These four subsets exhaustively describeE because the set
of branches contains all nodes (except the root nodes) in
the graph. Fig. 1 illustrates an edge partition on a simple
graph (some nodes are identified with a letter to facilitate the
reading of section III-B). In this graph (we considerw as a
constant function), there are three branches (black, gray and
white nodes), twotransverse edges (dashed arcs denotedt1
and t2) and oneinternal edge (dotted arc denotedi). Edges
(s, n), (s, 1) and(s, 6) correspond to the three first hops (red
arcs) linkings to the three branches.
With multipath hop by hop routing, theprimary path denotes
the optimal path depending on a given metric and a lexico-
graphic order to rank equal cost paths. Thus, for a given pair
(s, d), an alternate path is a path whose first edge is distinct
from the first one of the primary pathP1(s, d). More generally,
if the forwarding mechanism is distributed such as with hop by
hop routing, then all alternate paths are first hop distinct.Table
II summarizes all definitions related to transverse paths ter-
minology. The path((s, 1), (1, b), (b, c)) is simple transverse

and the path((s, 1), (1, b), (b, c), (c, n)) is backward trans-
verse. PathsP = ((s, 1), (1, b), (b, c), (c, n), (n, 11), (11, d))
andP ′ = ((s, 6), (6, 1), (1, b)) are bothforward transverse.
However,P contains a sub path((s, 1), (1, b), (b, c), (c, n)) ∈
Pbt(s, n) whereasP ′ contains a sub path((s, 6), (6, 1)) ∈
Pt(s, 1). The path((s, 6), (6, 1), (1, b), (b, c)) is 2-transverse.
The routing information base cannot directly use the set of
candidate next hops corresponding to the first hops of1-
transverse path to perform forwarding, since routing loops
may occur. Our approach needs a validation mechanism to
select valid next hops among candidate next hops in order to
guarantee the safety of forwarding. In this paper, we consider
the rule (2) introduced in section II to validate candidate next
hops. Due to space limitations, we do not discuss and evaluate
rules allowing to use a higher route diversity (see [11]).

A. DT and mDT algorithms

In [10], we have proposed and described the Dijkstra-
Transverse algorithm (DT). Here, we focus on DT properties
that we have not presented in [10] (see section III-B) and on
a DT improvement that we call multi-DT (mDT). However,
the basics of DT and mDT are similar.
To sum up, DT and mDT compute a multipath cost matrix on a
given root node (denoteds in the following). A multipath cost
matrix contains an overestimation of best costs for all (|N |−1)
destinations and via all possible (k+(s)) neighbors ofs. The
goal of these algorithms is to calculate a set of candidate next
hops corresponding to costs associated to each neighbor. The
calculation consists in two main stages:

1- Compute the best path tree andtransverse edges.
2- Computebackward and forward transverse paths.

At each iteration, our algorithms compute the best1-transverse
paths depending on the first hop. Without an optimized struc-
ture to implement the best costs vector, the complexity of DT
for each calculating nodes is in the worst case:

O(|N |2 + |E|+ |N | × k+(s)) = O(|N |2)

DT adds a time complexity proportional to the outgoing
degree of the given root nodes compared to Dijkstra. With a
Fibonacci heap [7] to implement the best costs vector1, it is
possible to reduce the time complexity to:

O(|N |log2|N |+ |E|+ |N | × k+(s))

The set of candidate next hops computed with DT does not
always include all next hops corresponding to equal best cost
paths. mDT (see algorithm 1) is able to solve this problem.
With mDT, only the first computation phase of DT is modified
by using a next hop matrix denotedTp. This matrix represents
the existence of a next hop per neighbor for each destination.
Tp is updated at each edge exploration. Candidate next hops
recording follows a transitive rule:Tp(k, y) ← Tp(k, x)
with y ∈ succ(x), k ∈ succ(s). Initially, if x = s then

1The minimum extraction has an unitary cost whereas the minimum
suppression has an amortized cost inO(log2(|N |)). For simplicity reasons,
evaluations results that we present in this paper only rely on array lists.

Tp(y, y) ← y. With ECMP, the update ofTp is performed
only if Tc(x) + w(x, y) ≤ Tc(y). We have chosen to
generalize this approach to improve the upper bound on the
cost of forward transverse paths composed with abackward
transverse path. This generalization increases the number of
validated next hops. Indeed, during the exploration of the set
of successors of nodex, if node y is not already marked, it
inherits all forwarding alternatives ofx, including when(x, y)
is an internal edge. In this case, the next hop inheritance is
not restricted to branches as with DT:y is not theson of x on
a primary path. mDT allows to use all forwarding alternatives
already computed towardsx. This set of paths is not limited
to 1-transverse alternatives, it can contain alternate paths with
several internal or transverse edges. The mDT computation is
based on the order of node exploration which depends on the
rank of costs stored inTc. With mDT, the first computation
phase is able to calculate all candidate next hops corresponding
to ECMP alternatives. Recursively, the cost inheritance takes
into account all the sets of equal best cost paths for all
marked nodes. The complexity of mDT is slightly greater than
the one of DT: for each iteration of the main loop,k+(s)
operations are necessary to execute the inheritance of next
hops and their costs. The worst case complexity of mDT is in
O(|N |2 +E× k+(s)) without an optimized structure forTc.

B. Properties of DT and mDT

In this section, we prove the ability of our algorithms to
compute at least two candidate next hops between each pair
of nodes in the graph if such next hops exist.

Property 1. DT computes all 1-transverse paths, and mDT
computes all paths computed with DT and all equal best cost
paths.

The proof of these properties relies on next hops inheritance
performed by DT and mDT (for more details, see [10]).
Now, let us define a major property of1-transverse paths.

Property 2. If there exists an alternate path P (s, d), then
there exists a 1-transverse path between s and d.

The demonstration of this property relies on two lemmas.

Lemma 1. If there exists an alternate path P from s to d then
there exists a path from s to d whose cost is not greater than
the one of P and containing only one transverse edge.

Proof of Lemma 1: Let P = (e1, e2, ..., ei, ..., em) be
an alternate path froms to d where ei = (x, y) is the last
transverse edge ofP and considerP1(s, x) the shortest path
from s to x. Then eitherP1(s, x) is empty becausex = s and
i = 1, or P1(s, x) is a primary path which is not longer than
(e1, e2, ..., ei−1). Let ◦ be the operator representing the path
concatenation. In both cases, there exists a pathP ′ such that
P ′ = P1(s, x) ◦ (ei, ..., em) is an alternate path with only one
transverse edge and which is not longer thanP .

Figure 1 illustrates lemma 1. The2-transverse pathP =
((s, 6), (6, 1), (1, b), (b, c)) betweens and c via the neighbor
node6 usesbranch1(s) to reach the transverse edge(b, c).

Algorithm 1 multi-Dijkstra-Transverse algorithm

1: procedure MULTI -DT (G(N, E, w), s)
2: Mck+(s),|N |−1: Cost matrix
3: Tpk+(s),|N |−1: Next hop matrix
4: Tc|N |−1: List of best costs
5: F|N |−1: List of father nodes
6: T|N |−1: List of marked nodes
7: Mc(k, d),Tp(k, d) and Tc(d) ← ∞, ∀d ∈ N, k ∈

succ(s)
8: Tc(s)← 0

⊲ SPT and transverse path computation
9: while |T | < |N | do

10: Choose the nodex (x /∈ T) of minimum cost
Tc(x)

11: for y ∈ succ(x) do
12: for k ∈ succ(s)|Tp(k, x) 6=∞ do
13: UpdateTp(k, y)
14: if Mc(Tp(k, x), x) + w(x, y) <

Mc(Tp(k, y), y) then
15: UpdateMc(Tp(k, y), y)
16: end if
17: end for
18: if Tc(x) + w(x, y) < Tc(y) then
19: UpdateTc(y), Fs(y) = x
20: end if
21: end for
22: Put x in T
23: end while

⊲ Backward and forward composition
24: for i : |N | → 1 do
25: for y ∈ succ(s) do
26: if Mc(y, T (i)) + w(T (i), F (T (i))) <

Mc(y, F (T (i))) then
27: UpdateMc(y, F (T (i)))
28: end if
29: end for
30: end for
31: for i : 1 → |N | do
32: for y ∈ succ(s) do
33: if Mc(y, F (T (i))) + w(F (T (i)), T (i)) <

Mc(y, T (i)) then
34: UpdateMc(y, T (i))
35: end if
36: end for
37: end for
38: ReturnMc
39: end procedure

There exists an alternate simple transverse pathP ′ = P1(s, b)◦
((b, c)). Note that the existence of a pathP with several
transverse edges implies that DT (and mDT) implicitly records
a 1-transverse pathP ′ in the cost matrixMc with a cost lower
or equal to the cost ofP .

Lemma 2. If there exists an alternate path from s to d with one
transverse edge, then there exists a 1-transverse path linking
s and d.

Proof of Lemma 2: Let P = (e1, ..., ei, ..., em) be
such an alternate path whereei = (b, c) is the unique
transverse edge. Without loss of generality we may assume
that P1(s, b) = (e1, ..., ei−1) is a primary path (see lemma1)
without any internal edge. Note that(e1, ..., ei) ∈ Pt(s, c). To
characterize the differences between transverse paths, weuse
an “ancestor function”. An ancestora of a nodex is a node
such that there exists a primary pathP1(a, x) included in the
SPT rooted ats. The closest common ancestorn of nodesx
and y is an ancestor ofx and y such that for any common
ancestora of x andy, a is also an ancestor ofn.
Let n be the closest common ancestor of nodesc andd.

1) If n = c then there exists a forward transverse path
linking s andd: a simple transverse path betweens and
c and a primary path betweenc andd.

2) Else if n = d then there exists a backward transverse
path linkings andd: a simple transverse path betweens
andc and a path in the reverse direction of the primary
path betweend andc 2.

3) Else ifn 6= c, n 6= d, thenn is the node where the branch
including d and c is subdivided into two sub-branches,
one containingc, the other containingd 3. In this case,
there exists a forward transverse path linkings and d
which contains a backward transverse path∈ Pbt(s, n)
and a primary pathP1(n, d).

Thus, in each case, the existence of a1-transverse path
allowing to reachd is verified.

Figure 1 illustrates lemma 2. Although the alternate path
((s, 1), (1, b), (b, c), (c, 11), (11, d)) is not 1-transverse be-
cause it contains an internal edge(c, 11), there exists a forward
transverse path((s, 1), (1, b), (b, c), (c, n), (n, 11), (11, d)). In
this case, the internal edgei is bypassed with a backward
composition followed by a forward composition. It allows to
compute the alternate next hop1 to reachd.
Thanks to the backward and forward composition, if there
exists a1-transverse path, then DT finds it. These two phases
allow to use edges of the SPT in both directions. Moreover,
DT considers all transverse edges because, as it is the case for
the classical Dijkstra algorithm, all edges must be explored in
order to mark all nodes. The difference is that DT implicitly
stores longer or equal cost paths in the cost matrix.

Corollary 1. For any pair of nodes (s, d), if there exists an
alternate path from s to d, then DT and mDT allow s to
compute at least two candidate next hops towards d.

2We assume thate ∈ E ⇒ e−1 ∈ E.
3Note that we know thatC1(s, c) > C1(s, n) andC1(s, d) > C1(s, n).

Corollary 2. If the graph contains no bridge edge, then DT
and mDT allow s to compute at least two candidate next hops
between any node and any other node of the graph.

For a given destination, the corollary 1 allows to conclude
that the number of candidate next hops is at least2 if there
exists an alternate path linkings and d. Corollary 2 is more
specific, if the network is 2-edge connected, then corollary1
can be extended for all pairs of routers.

IV. EVALUATION

We use the Network Simulator 2 (ns2, [2]) to compare
several routing approaches. ECMP is already implemented
within the link state module of ns2. We have extended ns2
to implement DT, mDT, kD and the downstream criteria, rule
(2), in the routing module (see [1] to find the implementation).

A. Topologies and simulations setup

We present results obtained on three different kinds of
topologies. The first category of networks are real topologies
with actual IGP weights (for confidentiality, we approximate
their size in Table III). Topologies denoted ISP1 and ISP2
are commercial networks covering an European country. ISP3
and ISP4 are Tier-1 ISP networks. The second category of
topologies were chosen among the Rocketfuel inferred set of
maps given in [9].
We have also used the Igen topology generator ([13]) in order
to obtain a set of evaluation topologies of various sizes. We
have generated10 topologies containing between20 and200
nodes using theK-medoid parameter, the delay-triangulation
heuristic and a2-sprint pop design. TheK parameter that
determine the number of routers per cluster is chosen such
that K = |N |

10 , so that each cluster contains approximatively
10 routers for each generated topology. These parameters offer
a great physical diversity to measure the relevance of our
proposition to achieve the same level of diversity as computed
with kD. The link valuation used for this third category is
the inverse of the link capacity. The mean degree, denoted
k, is approximatively the same for each generated topology:
k ∼ 4. These networks represent access backbones and contain
two kinds of links:155Mbps for access links and10Gbps for
backbone links (so that weights of links are respectively64
and1).

B. Results

C. Diversity results

First, we have measured the path diversity (see Fig.2).
We have calculated the total number of candidate next hops
obtained with ECMP (denoted EC), DT, mDT, and multiple
Dijkstra computations (kD). Results are represented as a
performance ratio between the considered technique and kD
for all routers of a given network. kD provides the best
diversity but with a higher computation cost. We observe that
DT and mDT are able to compute approximatively90% of
candidate next hops obtained with kD, while ECMP obtains a
performance ratio only between60% and80%.

TABLE III
EVALUATION RESULTS ON REAL AND INFERRED TOPOLOGIES

Candidate next hops Validated next hops Number of operations
Network Size mean ratio/kD (%) mean ratio/kD (%) mean ratio/kD (%)

name |N | |E| kD EC DT mDT kD EC DT mDT kD EC DT mDT
ISP1 25 50 1.46 76 97 97 1.10 97 100 100 489 60 66 75
ISP2 50 200 3.58 43 93 97 1.79 69 89 94 6730 30 32 32.5
ISP3 110 350 2.70 55 89 92 1.45 82 97 99 8079 38 41 43.5
ISP4 210 880 3.73 44 86 88 1.81 72 96 99 41747 27 28 31
Exodus 79 294 3.58 44 88 96 1.73 58 94 99 5569 29 34 37
Ebone 87 322 3.49 46 90 96 1.76 77 93 99 9698 30 33 36
Telstra 104 304 2.30 72 92 95 1.30 90 98 99 6526 54 57 59
Above 141 748 5.29 34 86 97 2.50 58 89 99 40143 18.5 20 23
Tiscali 161 656 3.68 54 91 97 1.97 74 92 97 31044 27 29 32

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

20 40 60 80 100 120 140 160 180 200

C
om

pu
ta

tio
n

ra
tio

Number of nodes

EC/kD
DT/kD

mDT/kD

Fig. 2. Number of candidate next hops (Igen topologies)

D. Complexity results

Then, we have compared the time complexities of the fore
mentionned algorithms (see Fig. 3). We have represented the
execution time measured in number of operations needed by
DT, mDT and kD to compute their set of candidate next hops.
The number of operations is an average computed for each
router. This value takes into account all operations necessary
to extract themin of Tc and perform update ofTc, Mc
and Tp. We notice that the time saved with DT or mDT is
really significant compared to kD. The number of operations
needed by kD is approximativelyk× |N |2 whereas mDT and
DT need approximatively|N |2 operations. This complexity is
equivalent to the worst case of an ECMP computation. The
time complexity upper bound is reached because some routers
of Igen topologies have a high degree of connectivity.

E. Loopfree diversity results

Finally, we have compared the number of validated next
hops that are selected with the downstream criteria (rule 2)
depending on the computation algorithm (see Fig. 4). We
remark that mDT allows to validate as many next hops as kD.
This result can be explained by the specific valuation function

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 20 40 60 80 100 120 140 160 180 200

N
um

be
r

of
 in

st
ru

ct
io

ns

Number of nodes

EC
DT

mDT
kD

|N|2

Fig. 3. Number of operations (Igen topologies)

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

20 40 60 80 100 120 140 160 180 200

V
al

id
at

io
n

ra
tio

Number of nodes

EC/kD
DT/kD

mDT/kD

Fig. 4. Number of validated next hops (Igen topologies)

w of our set of generated topologies: there are only two very
distant weights used in these networks.

F. General results and discussion

Results given in Table III illustrate the same evaluation
of performance ratios and complexity on the set of real and
inferred topologies. For these sets of topologies, Table III also
shows candidate and valid next hops average per destination

obtained with kD. Diversity ratio results are similar to theones
obtained with Igen although degrees and weights distributions
are completely different. The main difference comes from
the time complexity evaluation. On these topologies, the
maximum degree of nodes is two times lower than with Igen
topologies. The measured complexity is far away from the
theoretical worst case. More generally, several parameters,
such as the valuation functionw or the degree distribution
may strongly influence complexity measures, and thus the
performance of algorithms. For example, ifw is a constant
function, rule (2) is equivalent to ECMP. Thus, in this case,
the number of valid next hops is the same for mDT, kD and
ECMP. Another key point is the fact that the alternate paths
which are not computed with mDT have a cost generally much
more greater than the one of the primary path, that is why the
ratio of loopfree alternatives between mDT and kD is close to
100%.
To summarize, although DT and mDT consume less processor
resources than kD, they are able to offer almost the same
diversity in terms of validated next hops.

V. CONCLUSION

Multipath routing enhances the network reachability and
allows load balancing to circumvent congestions or failures.
However, the overhead imposed by signaling messages, the
time and space complexity can hamper its deployment. In this
paper, we propose a simple scheme that is able to generate a
greater path diversity than ECMP with an equivalent overhead.
Our path computation algorithms, Dijkstra-Transverse, and
its improvement multi-DT, allow to compute at least two
candidate next hops between all pairs of routers if such next
hops exist. To validate candidate next hops in a distributed
manner, we have considered the simplest loopfree routing
rule, the downstream criteria. Our evaluations suggest that the
gain of time is very significant. We show that the number of
next hops validated with the downstream criteria is slightly
the same using mDT or a Dijkstra computation per neighbor.
Moreover, our proposition can be integrated in OSPF or IS-
IS by replacing the path computation algorithm without any
change in the protocol. It can be deployed incrementally, some
routers using ECMP and others DT or mDT. Our proposition
can be extended to compute backup next hops only selected
if a failure occurs.

ACKNOWLEDGEMENT

The research results presented herein have received sup-
port from Trilogy (http://www.trilogy-project.eu), a research
project (ICT-216372) partially funded by the European Com-
munity under its Seventh Framework Programme. The views
expressed here are those of the author(s) only. The European
Commission is not liable for any use that may be made of
the information in this document. The authors would like to
gratefully acknowledge Pierre Francois and Olivier Bonaven-
ture for their comments.

REFERENCES

[1] “Implementation of dt and mdt in ns2,” http://www-r2.u-strasbg.fr/
∼merindol/uploads/Research/DT.tar.gz.

[2] “The network simulator- ns2,” http://www.isi.edu/nsnam/ns.
[3] D. Applegate and E. Cohen, “Making intra-domain routingrobust to

changing and uncertain traffic demands: understanding fundamental
tradeoffs,” inSIGCOMM, 2003.

[4] D. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan, and G.Swallow,
“RSVP-TE : Extensions to RSVP for lsp tunnels,” RFC 3209, 2001.

[5] R. Banner and A. Orda, “Multipath routing algorithms forcongestion
minimization,” IEEE/ACM Trans. Netw., 2007.

[6] I. Cidon, R. Rom, and Y. Shavitt, “Analysis of multi-pathrouting,”
IEEE/ACM Trans. Netw., vol. 7, no. 6, 1999.

[7] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson,Introduction
to Algorithms. McGraw-Hill Higher Education, 2001.

[8] S. Kandula, D. Katabi, B. Davie, and A. Charny, “Walking the tightrope:
Responsive yet stable traffic engineering,” inSIGCOMM, 2005.

[9] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson, “Inferring link
weights using end-to-end measurements,” inACM SIGCOMM Internet
Measurement Workshop, 2002.

[10] P. Mérindol, J.-J. Pansiot, and S. Cateloin, “Path computation for
incoming interface multipath routing,” inECUMN, 2007.

[11] P. Mérindol, J.-J. Pansiot, and S. Cateloin, “Improving load balancing
with multipath routing,” inICCCN, 2008.

[12] M. Pascoal, “Implementations and empirical comparison for k shortest
loopless path algorithms,” inThe Ninth DIMACS Implementation Chal-
lenge: The Shortest Path Problem, 2006.

[13] B. Quoitin, “Topology generation through network design heuristics,”
http://www.info.ucl.ac.be/∼bqu/igen/.

[14] C. Villamizar, “Ospf optimized multipath (ospf-omp):draft-ietf-ospf-
omp-02.txt,” IETF, Draft, Feb. 1999.

[15] S. N. Vutukury, “Multipath routing mechanisms for traffic engineering
and quality of service in the internet,” Ph.D. dissertation, 2001.

[16] H. Wang, H. Xie, L. Qiu, Y. R. Yang, Y. Zhang, and A. Greenberg,
“Cope: traffic engineering in dynamic networks,” inSIGCOMM, 2006.

[17] X. Yang and D. Wetherall, “Source selectable path diversity via routing
deflections,” inSIGCOMM, vol. 36, 2006.

