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Abstract— Currently used IP routing protocols calculate and
only use a single path between two nodes of a network, or in the
best case, only paths with the same cost (with OSPF2 or IS-IS
extension: ECMP). If we want to use the underlying physical
network with multipath routing efficiently, the loopfreeness of
the used paths has to be guaranteed especially with distributed
computation. Indeed different types of traffic engineering with
source computation like OMP-MPLS or MATE-MPLS do not
have to pay attention to loops. However the positioned paths, with
CR-LDP or RSVP-TE for example, are not flexible enough to
support strong load oscillations. Load balancing is only possible
on the ingress node which labels the different paths (with a
hash function to avoid packet mis-ordering for TCP traffic) even
though the congestion spot can be very far from the ingress
node. This is why distributed techniques can react more quickly
to prevent congestion when possible. But such techniques do not
generate enough paths in poorly connected topologies in so far
as the loopfreeness condition employed (equal cost path, Loop
Free Alternate or Loop Free Invariant) is stricter than necessary.
In this article, we propose a multipath routing scheme able to
compute more loopfree paths (with a low complexity algorithm
such as Dijkstra in the worst case and a light communication
protocol between directly adjacent nodes) than with existing
propositions.
KEYWORDS:Multipath routing, QoS provisioning, traffic engi-
neering, fast re-routing.

I. INTRODUCTION

Intra domain Traffic Engineering (TE) becomes a necessity
in modern Internet Service Provider design. One use of TE is
load balancing between operational links to avoid hot spots and
increase network reliability. Furthermore, TE allows avoiding
failure by faster rerouting than traditional routing using the
shortest path. TE objectives are often obtained by routing
traffic demands on multiple paths. Multipath routing can be
divided into four tasks:

a) Compute and position paths.
b) Analyze local traffic activities and disseminate local

resources availability in the network.
c) Define load balancing policy depending on the received

information.
d) Split traffic among paths with granularity of a flow.

This article only focuses on the first task. The second and third
issue are the subjects of several discussions in scientific papers
([15],[10],[14] for example) and generally try to minimize the
maximum link use by using off-line or online (realtime) traffic

measurement, but it is difficult to prevent load oscillations and
guarantee system stability. The final task is to avoid packet
mis-ordering of a particular flow (characterized by the same
source, destination, port and other parameters depending on
the needs) because TCP traffic mis-ordering implies packets
re-emission and throughput decreases when it occurs. In [11],
a good analysis of this issue with ECMP is given.
Several techniques are used with IP routing, such as RSVP-
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Fig. 1. How many route can link S to D without loop?

TE ([6] and [5]) or CR/LDP ([3] and [13]) with MPLS ([22]),
in order to use the connectivity of the physical networks
efficiently. In this case, path computation and load balancing
are only made on the ingress router. Hence, on the one hand
this kind of scheme is too rigid to achieve quick reaction in the
case of a congestion. On the other hand, the extensibility in
terms of number of ingress-egress (S-D) pairs, on which this
kind of source computation protocol is used, remains limited.
Indeed, without considering LSP merging, the label switching
techniques may require forwarding tables proportional in size
to the number of source-destination pairs in the network. In
figure 1, if S wants to balance the load through the represented
network for the destination D, either numbered routers are able
to distribute the load by themselves with their own resource
information (it is distributed routing), or S constructs "Label
Switched Paths" (LSP) towards D. Hence, only source-router
S is able to compute some distribution proportions to really
share the load across the LSPs it computes and positions (it is



a kind of source routing without carrying the full path in the
packet’s IP header). In this figure, if we consider that all links
have the same bandwidth, only the best path via router 1 can be
used with distributed multipath existing techniques, whereas
all possible paths can be used with labeling or reservation
mechanisms. In this article, we will show how with our
distributed proposition, S can benefit from six paths (S-1-D,
S-1-3-D, S-2-3-D, S-2-4-D, S-2-4-5-D, S-2-3-1-D) to reach D
whereas existing distributed techniques allow only one: S-1-D,
the shorstest one.

In section II, we first discuss about existing propositions or
actually used protocols in order to highlight their limitations.
Then, in section III we present our proposition and its two
main aspects to compute and validate a maximum of loopfree
paths. After presenting an evaluation and simulations results
of our method in section IV, we conclude with a discussion
about potential advantages of our distributed technique for load
balancing and fast rerouting.

II. EXISTING TECHNIQUES

Two kinds of methods exist to achieve load balancing on
multiple paths. The first category consists of source routing
methods (deployed above traditional IP-routing) whereas the
second category gathers distributed route computation proto-
cols. Source routing multipath generally contains two stages
for path positioning:

a) On source path computation algorithms (like K’s best
path [9], CRA [19], DSPA [20] or varied heuristics) to
calculate efficient paths to reduce delays and improve
throughput.

b) Path positioning protocol (RSVP-TE, CR-LDP ) for
deploying calculated paths.

The main advantage is the ease of optimization to ensure
end to end delay reduction or throughput increase, without
considering loop presence. However, only ingress nodes which
label or reserve path resources until the egress nodes are able
to share the load on different paths, so the reaction time can
be as long as the propagation delay on the return path. In
addition, the extensibility in terms of Ingress/Egress router
pairs using such techniques is limited. In an MPLS cloud, only
border routers play this role in a reasonable perspective. [23],
[14] and [8] are good examples of multipath source routing
description.
Distributed multipath routing protocols can solve this problem,
but they have to guarantee that each IP packet in transit
between two routers cannot loop on any router of the route
linking these routers. We have now to define the properties
of loop free routing for distributed policies. We distinguish
between "local" traffic coming from the router itself or directly
attached subnetworks, and "transit" traffic coming from other
routers. For simplicity we assume that they come from distinct
interfaces.

Definition 1 (Loopfreeness for distributed multipath routing):
A distribute multipath routing system is loopfree, if whenever
a router s sends a local or transit packet to any next hop v
towards a destination d, this packet never comes back to s.

Notations Definitions:
G(N, E, w) Oriented graph G with a set of nodes N, a set of

edges E and a strictly positive valuation w of edges.
|N|,|E| respective cardinal of sets N and E.
e = e.x, e.y edge e ∈ E which connects node x to node y.
k−(x), k+(x) incoming and outgoing degree of node x.
succ(x) direct neighbor set of x

y ∈ succ(x) if ∃ an edge e = e.x, e.y ∈ E.
P m

j
(s, d) = jth best path of m hops linking s to d. Recursively, this

{e1, ..., em} is the best path whose first edge is distinct from the
first one of the j − 1 best paths according to metric C.

Cm
j

(s, d) = jth best cost (with lexicographical order) computed on s∑m

i=1
w(ei) towards d (1 ≤ j ≤ k+(s)), (0 < m < |N |).

NHj(s, d) jth best next hop computed on s towards d. This is
the first hop e1.y of Pj(s, d).

TABLE I
NOTATIONS

Notations used in this document are given in Table I.
Several conditions1 have been proposed for loopfreeness:

C1(v, d) < C1(s, d) (1)
Cj(s, d) + c(s,NHj(s, d)) < C1(s, d) (2)

Cj(s, d) = C1(s, d) (3)

Conditions 1 and 2 are similar in theory but their verification
is done in a different way in practice. Condition 1 is verified
in a distributed way, i.e s asks its neighbor for the cost of
its best path to be strictly less than its own (see Loop Free
Invariant condition in [24] or Loop free Alternate in [4]),
whereas condition 2, described in [18], is verified on s for
each path possibility, computed on s with a path finding
algorithm without probing neighborhood. Condition 3, used
by ECMP [16], just verifies that a jth path cost computed
on s is equal to its best one (j=1). Each of these three
conditions is sufficient but not necessary, so that the number of
validated paths is usually not able to improve significantly the
load distribution on a poorly connected network. Moreover,
conditions 1 and 2 only validate equal cost paths if link
valuation is homogeneous (number of hop metric) in the
network. The condition used by ECMP does not consider all
equal cost paths for a given destination, but only disjoint equal
cost paths computed with Dijkstra algorithm. Condition 1 is
used with Dijkstra computation too, but each router should ask
its neighborhood to verify the condition, which again should
ask its neighborhood to verify the condition and so on until
the destination.

III. OUR PROPOSITION

In this section, we present our distributed multipath protocol
in its two stages of loopfree multipath routing construction.
The originality of our technique is the distinction made by the
router on the flow origin (the incoming link) to direct it more
precisely. Indeed, in the existing distributed propositions, the
routing table does not consider where packets come from so

1Number of hop index m in table I only appears when it is useful
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that routing table rows have to be the same for all packets
having to reach the same destination. This is why the condi-
tions (1),(2) and (3) have to be stricter than necessary. Figure
2 depicts our procedure to construct routing tables which
take into account the interface through which packets arrive.
The first step is to construct a candidate routing table with
a Dijkstra modified algorithm we call "Dijkstra-Transverse"
(DT). At this stage, we just consider the best first-edge disjoint
paths for a given destination. Indeed, if computed paths on s
have the same first hop for a destination d, then the router on
which the routes diverge is able to benefit by itself from this
disjunction.

v tests the route validity for each of its next 
hop computed towards d and sets a routing 
row for its predecessor s if loop avoiding 
is guaranteed.

if at least one valid route via v exists for 
d, s sets a routing row for itself and/or his 
subnetwork (leaf node).

Source computation stage I 

Distributed validation stage II

On source validation stage III

Candidate routing table row on s for d 

Candidate routing table row on v for d

Routing table row on v for s

d         v         x

d         w         y

s         d         w         y

s         d         v         x

ROUTE via w VALIDATION

Routing table row on s for s
CAPTION:

I         D         NH         C

I Incoming interface

D Destination

NH Next Hop
C Cost

s (and v) computes first-edge-disjoint paths 
for every destination d and asks his 
concerned neighboorhood for each d

ROUTE via v VALIDATION

s

v w

d

s

v

s

v

Fig. 2. Global protocol description

Figure 2 shows the three steps of the next hop validation.
Every router s begins by computing (phase I) a set of multipath
for each destination and defines, depending on these results, a
candidate routing table. Then, s sends to its direct neighbors,
v for example a request to test the path validity. Its concerned
neighbor, here v, checks the feasibility of the route and returns
an answer accordingly (phase II). The answer sent by v to s,
allows s to decide if v can be a valid next hop for a subset of
destination.
Before step II is reached, best equal cost candidate routing
rows for a given destination are automatically validated for
each incoming interface, so that the routing strategy is tem-
porarily the same as ECMP. Our protocol can be implemented
as an extension of a link state protocol such as OSPF while
adding a path validation mechanism. The underlying Dijkstra
algorithm used in OSPF to compute best paths is extended to
calculate "transverse paths", as detailed in the next subsection.
Routers then exchange information to validate, by succes-

sive adjacency on their direct neighborhood, transverse paths
computed by Dijkstra-Transverse for their respective incoming
interface.

Terms: Definitions:
branch all best paths P1(s, d) in the best path tree
branchh(s) which have the same first edge {s, h}.
transverse an edge is transverse if it connects two distinct branches.
P(n) function which returns predecessor of n in the best path tree.
simple a path of m edges {e1, e2, ..., em} such that
transverse {e1, e2, ..., em−1} forms a best path P m−1

1
(s, em−1.y)

Ptm
j

(s, d) and such that em is a transverse edge.
backward a path of m edges {e1, e2, ..., em} such that for a w i.e
transverse 0 < w < m, {e1, e2, ..., ew} is simple transverse, and
Pbtm

j
(s, d) such that {em, em−1, ..., ew} is a best path P m−w

1
(d, ew.y).

forward a path of m edges {e1, e2, ..., em} such that for a w i.e
transverse 0 < w < m, {e1, e2, ..., ew} is either
Pftm

j
(s, d) simple transverse or backward-transverse and such that,

{em, em−1, ..., ew} is a best path P m−w
1

(ew.y, d).

TABLE II
TERMINOLOGY

A. Source computation

At this stage, we compute first edge disjoint paths, including
at most one transverse edge, with a low complexity algorithm
(like Dijkstra [7] in the worst case). The algorithm is shown
below and definitions are given in Table II.

Our algorithm can be divided into three principal steps:
a) Calculate the best path tree (lines 14-17) and simple

transverse paths (lines 18-20).
b) Construct a backward transverse paths set and add it to

the previous set (lines 24-30).
c) Construct a forward transverse paths set and add it to

the previous set (lines 31-37).
In addition, we must consider that edges in the best path
tree are symmetric (duplex link) for backward transverse path
computation (step b and c). In algorithm 1, the matrix Mc (Mc
gathers all best paths costs C for each possible next hop) has
to be indexed by the outgoing interface to optimize steps 2 and
3, and by destination because in a real environment a router
does not know at each instant the whole network topology, so
that the concerned structure cannot be statically allocated. The
complexity of our algorithm on a node s is in the worst case
without optimized structure to modelize the first cost stack
Tf (n, 0):

O(|N |2 + |E|+ |N | × k+(s)) = O(|N |2)

but using a Fibonacci stack to modelize Tf , we may obtain:

O(|N |log2|N |+ |E|+ |N | × k+(s)) = O(|E|)

The update procedure for matrix Mc and Tf simply writes
the most recently smallest distance tested (lines 15, 17, 27
and 34), on each concerned destination, considering the first
next hop (necessarily a direct neighbor of s). The transverse
paths (simple, forward or backward) contain, at the most,
one transverse edge linking two branches of a best path
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Algorithm 1 Dijkstra-Transverse algorithm
1: procedure DIJKSTRA-TRANSVERSE(G(N,E), s)
2: LOCAL:
3: Mc(k+(s), |N |): Cost Matrix for each next-hop.
4: Tf(|N |, 2): Best path table (cost and first hop).
5: P (|N |): List of father nodes.
6: To(|N |): Stack of marked nodes.
7: INITIALIZATION:
8: Mc(k,d) and Tf(d,0) ← ∞, ∀ d, k.
9: Mc(k,s)← 0, ∀ k, Tf(s,0)← 0.

10: while ∃ n ∈ N not marked do
11: →Select smallest cost node x in Tf
12: →Push x in To
13: for all y ∈ succ(x) do
14: if Tf(x,0)+w(x,y) < Tf(y,0) then
15: →Update Tl on y
16: → P (y) = x

17: →Update Mc for destination y
18: else if Mc(Tf(x,1),x)+w(x,y)<Mc(Tf(x,1),y)

then
19: →Update Mc on y
20: end if
21: →Mark x
22: end for
23: end while
24: for i→ |N | to 1 do
25: for all y ∈ succ(x) do
26: if Mc(y,To(i))+w(To(i),P(To(i)))<Mc(y,P(To(i)))

then
27: →Update Mc on P(To(i))
28: end if
29: end for
30: end for
31: for i→ 1 to |N | do
32: for all y ∈ succ(x) do
33: if Mc(y,P(To(i)))+w(P(To(i)),To(i))<Mc(y,To(i))

then
34: →Update Mc on To(i)
35: end if
36: end for
37: end for
38: end procedure

tree. With this algorithm, we just compute all best paths
(according to the first edge) which are able to link one branch
to another in addition to the best path tree. In the next
subsection we give some examples of transverse paths on
the simple network drawn in figure 1. Note that node S also
computes, with DT, a backward transverse path Pbt43(S, 1) =
{{S, 2}, {2, 4}, {4, D}, {D, 1}} and a forward transverse path
Pft44(S,D) = {{S, 2}, {2, 3}, {3, 1}, {1, D}} but the matrix
Mc is not updated (because router 2 already proposes a better
cost: lines 26 and 34 of algorithm 1). These paths are not
stored in matrix Mc because there are already better paths

with the same first hop. More examples are given in [17].
In the next section, we will present our validation procedure
to eliminate loops.

B. Distributed validation

1) One hop validation procedure: Since paths are computed
at the source, we enter the neighbor-node validation phase. At
this moment, only the best cost equal paths are already valid
by default without considering the incoming interface of flows.
Now routers have to exchange best-path-cost information to
validate other (simple, backward or forward) paths previously
computed. A router s sends, for all destinations d, a message
to its successor v (if v is a possible next-hop for d computed
with DT on s) which contains the value of the best calculated
cost path to reach d. If v proposes at least one valid path
for d, it returns a positive answer to s, which validates the
path via v to d with an incoming interface representing itself
and/or its subnetwork for local traffic (see figure 2). The main
advantage of our technique is the use of a candidate routing
table use allowing to individually test the validity of each next-
hop (corresponding to the first hop of a path Pj) proposed
by an adjacent node towards the desired destination. Hence,
loopfreeness condition can be expressed as:

Cj(v, d) ≤ C1(s, d), 1≤j≤k+(v) (4)

This relation means that the first hop on a path Pj (computed
on v) is valid for packets coming from s to destination d
(and so on for paths Pk, k ≤ j). Indeed, if an adjacent node
v to s guarantees a cost equal to the best one that s has, for
a given destination, then, one hop further, s is sure that this
path cost is strictly less than its own for the same destination.
Moreover the path is validated on v for s as input (transit
traffic from s) only if v validates the route for itself or its
subnetwork. In figure 2, if the cost y proposed by v is less or
equal to the best one on s (necessarily less than x), then the
router s can use v as a possible next hop ( noted NH in the
following) as soon as v has validated its next hop w in the
same manner.
On the network represented in figure 1 there are two
branches rooted at router S (by lexicographical search):
b1(S)={P 1

1 (S, 1), P 2
1 (S, 3), P 2

1 (S,D), P 2
1 (S, 3), P 3

1 (S, 5)}
and b2(S)={P 1

1 (S, 2), P 1
1 (S, 4)}. Then, S records with

Dijkstra-Transverse computation two candidate routing rows 2

(D|1|2 and D|2|3 corresponding to P 2
1 (S,D) and Pt32(S,D)

respectively) towards destination D. In the same way, router
1 has three paths (a best path P 1

1 (S, 1)={1, D} of cost
C1

1=1, a transverse path Pt22(1, D)={{1, 3}, {3, D}} of cost
C2

2=2 and a path Pt43(1, D)={{1, S}, {S, 2}, {2, 4}, {4, D}}
of cost C4

3=4) for D. Router 2 has also three possibilities
(candidate routing row D|3|2 corresponding to a best
path P 2

1 (2, D)={{2, 3}, {3, D}}, D|4|2 corresponding
to a transverse path Pt22(2, D)={{2, 4}, {4, D}} and
candidate routing row D|S|3 corresponding to path
Pt33(2, D)={{2, S}, {S, 1}, {1, D}} ) for the same destination.

2These notations are defined in figure 2
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Both routers 1 and 2 only validate the paths where costs
are less or equal to two hops (C ≤ 2), for packets
coming from router S. Furthermore, router 3 only validates
its direct path to D for packets coming from router
1, whereas it validates its path via router 1 to D for
router 2 in the incoming interface. In the same manner,
router 4 validates its two paths P 1

1 (4, D)={{4, D}} and
Pt22(4, D)={{4, 5}, {5, D}} towards D but not its transverse
path P 3

3 (4, D)={{4, 2}, {2, 3}, {3, D}} for router 2 as input.
Finally, S benefits from six paths towards D thanks to two
routing rows on S (S|D|1|2 and S|D|2|3) and two routing
rows on routers 1,2,3,4 (respectively S|D|D|1 and S|D|3|2,
S|D|3|2 and S|D|4|2, 2|D|D|1 and 1|D|D|1, 2|D|D|1 and
2|D|5|2) and one routing row on router 5 (4|D|D|1).

2) p-hop validation procedure: We have also developed a
more complex protocol which tests the validity of a path (in
fact path’s first hop composition between adjacent routers) up
to depth p. This procedure triggers a wave of requests on the
candidate routing graph network rooted on the trigger router.
Answers obtained by the return wave will make it possible
to prune this graph with the insurance of destroying packet
circuits more precisely as depth p increases. With this depth
procedure, the number of exchanged messages depends on
the degree of each router located between the source and
the last router tested (p routers away from the trigger router
at most). To minimize the number of validation messages,
each router aggregates its requests according to destination,
whereas answers are returned directly to accelerate validation
convergence. Formally, if we note K the upper bound in router
degree, the maximum number of validation messages noted
nsync satisfies the following inequality:

nsync < |N | × (Kp + Kp × |N |)

In order to avoid too much load in terms of messages we
have decided to limit our depth-procedure to p=2 and merge
answers by destination because it is a waste of time to answer
by destination individually with p ≤ 2. We therefore obtain
only |N | × (2 ∗K2) → O(|N | ×K2) messages at worst on
the whole network. However, in the next section, we analyze
some results obtained with p=3 to highlight advantages and
inconveniences of the depth procedure. At this stage, we have
to introduce the notion of "route" by as opposed to the term
"path". With distributed (hop by hop) routing only the first
hop of a computed path is actually used for routing.

Definition 2 (Route): Formally we denote a route of m hops
which links a source S and a destination D :Rm(S,D), and
we note NH(S, S,D), the set of validated next hops of
computed paths with DT on S, for its local traffic. Hence,
a route Rm(S,D) is a composition of validated next hops
(depending on the incoming interface: the link which connects
the preceding router) and takes this form :

Rm(S,D) = {r1, r2, · · · , ri, ri+1, · · · , rm}

with
ri+1 ∈ NH(ri, ri−1, D)

NH(ri, ri−1, D) is the set of validated NHs on ri for ri−1 as
input (transit traffic).
Now we can describe the concept of loop avoidance with a
distributed Breadth First Search loop detection (BFS dissem-
ination) p node in depth.
p-depth Loop Avoidance (p-LA) principle:
This is a wave of messages triggered on each router (poten-
tially all routers in the domain). The goal is to determine when
a next hop is valid even if the adjacent router does not satisfy
relation (4) for this NH. These messages contain the best cost,
computed on the trigger router, to reach every destinations
in the domain. We do not have to consider all Internet
destinations but only routers belonging to the same domain,
as depicted in the next subsection concerning extensibility.
With this information a router can determine if it is able
to forward data without loop, and it answers according to
its costs computed with DT. The condition is the same as
relation (4) but for all possible NHs composition at most p
router in depth (each end rk of a partial route of p-1 elements
{r2, · · · , rk}, k≤p has to verify this relation).
Indeed, each router only takes care of potential loops back to
itself, so that all neighboring nodes (potentially Kp) have to
guarantee, in a radius of p − 1 at most, a cost for D less or
equal to the best one calculated on S, for all NH’s possible
composition computed with DT. It means, that one hop further,
we are sure that the cost is strictly smaller than the best one on
S for all possible NHs , because each link valuation is strictly
greater than zero. A router, except S, can appear twice or more
in the validation phase, made with BFS, because it will be its
responsibility to avoid loops coming back to itself. The BFS
dissemination is triggered one hop after the neighbor, so it
must look for every NHs computed by composition of DT on
at the most Kp routers. The validation search triggered by a
router S (which really begins on a router r1 ∈ NH(S, S,D)
) has to explore, in a radius of p-1, all path compositions to
test every possible routes (on subgraph generated by DT). A
router rj is able to select a particular NH only with adjacent
routers (rj+1) because of the distinction done on incoming
interface by one-hop neighborhood (as depicted for one hop
validation).
Description of forward wave:
If an adjacent router r1 does not satisfy relation (4) (validation
requirement) on some of its candidate NHs computed with
DT, for a given destination D and a trigger source S, it then
sends a request to all its NHs for which the condition is not
verified. The routers queried by r1 do the same until depth p is
reached or validation is obtained, and return an answer in case
of loopfree success. Router rk, 1 < k ≤ p, records a positive
response for their candidate NHs which verify relation (4).
Description of returned answers:
The returned answer contains a null or a positive result, for a
given pair (S,D). These responses are gathered for all possible
candidate NHs, depending on this pair (S,D), and returned to
the router which asked the loopfreeness for S (the father node
in the wave triggered by S on its direct neighbor). The answer
are returned to father node only if, for a given pair (S,D), the
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concerned router:
1) receives at least one positive response for one of its NHs.
2) receives responses from all its candidate NHs.

Father node can in its turn transmit a positive response if it
verifies these two items, and so on until S. If direct neighbor r1

receives a positive answer, it can compute a new valid routing
row and transmit this information to S.
The value contained by the end-response computed on router
rk,1≤k≤p is:

a) positive if the router verifies relation (4) for all its NH
computed towards D.

b) null if the router creates a loop not coming back to S.
c) or there is no response (because a loop comes back to

S).
Properties 1 (p-LA Loopfreeness): The p-depth Loop

Avoidance procedure constructs a set of routes between each
pair of routers which is loopfree in a stable state network.

Proof 1 (p-LA Loopfreeness): Formally with the p-LA pro-
cedure, a router ri in a route Rm(S,D) guarantees, for every
destination D, that:

(a) No path composition in a maximum radius of depth p
can come back to ri.

(b) Each router ri+k, 1≤k≤p at the end of a path composition
proposes, for all its NH, a cost less than its best one
towards D. That means routers ri+k+1 propose a best
cost strictly less to the best one that ri does, because
the edge valuation is strictly positive.

(c) Each direct neighbor ri+1 activates routing rows posi-
tioned by ri (transit traffic) only if they are already (or
later) activated for its local traffic.

The last item means for a given D, if there is a row for transit
traffic there is also a row for local traffic with the same NH.
Hence, demonstration is still valid if we just consider loop on S
because each router must verify the same conditions. In figure
3 we have represented the demonstration basis with i = 0
(r0 = S denoted r in the figure) whereas in the following,
we generalize the demonstration for every router on any route
linking S to D.

r r rrr r rr

CAPTION:
Element of the decreasing cost chain

Direct link

....

Non direct link

kw+1kwkw-1k2k1+1k1k1-1

Fig. 3. Decreasing cost chain

If we admit that a route Rm(S,D) contains a loop on a
router ri, 0≤i≤m, it means there exists j on the route i.e with
i < j: ri = rj . Yet, we know that a router ri+k1, 1≤k1≤p+1

guarantees a cost strictly less than ri (condition (b)) so it can-
not be ri. In the same way, we know by transitivity of relation
"<" that there exists a chain of strictly decreasing best costs

(see figure 3), towards D, on routers {ri+k2, ri+k3, · · · , ri+kn}
((kw − k(w − 1)) ≤ p + 1, i + kn ≤ m ), so that none
of these routers could be ri, and one can deduce that the
router rj is positioned somewhere behind a router ri+kw. So
router rj = ri has to guarantee, before exploring ri+k(w+1)

or worse ri+kw, either a strictly lower better cost, or that all
its NHs composition, (not validated NH but DT’s computed
NH) proposes a cost less or equal to the best cost on ri+kw.
It should then explore with BFS, ri+k1, because the best cost
of ri is strictly greater, and in the same manner ri+k1 should
explore ri+k2, and so on until ri+k3 · · · ri+kw, but it is impos-
sible because of conditions (a) and (c). The only position that
could be occupied by rj is somewhere one hop behind ri+kw

(router denoted rkw+1 in figure 3) because this one can select
the next hop for its traffic, one by one, without exploring all
the subgraph generated by DT composition between adjacent
nodes. Now, we just have to focus on the router ri+kw−1

behavior: it cannot select rj as a viable outgoing interface
for D on its neighbor ri+kw. Indeed, if it puts a new entry for
its traffic towards D, it should explore itself to prove the route
validity (condition (a) is then not satisfied), because either its
best cost for D is strictly less than ri’s one for w > 1, or
for w = 1 because ri has precisely done the same exploration
to guarantee an equal cost for D. Consequently, rj 6= ri and
a validated route does not include loops. To finish, the last
router of a route Rm(S,D) is obviously rm = D.
The routers included in the decreasing cost chain play a
main role in order to control the exit of a loop. They have to
guarantee a strictly decreasing best cost for D so that they
are progressively closer to D. This is why a packet cannot
come back to a router it already crosses.
This demonstration remains valid even if all routers choose
a different value of depth p for their validation phase. If a
router is not configured for Incoming Interface Multipath
Routing, it can work with the others with its best outgoing
interface only if precedent adjacent routers use it (without
validation phase) through one of its best NHs.

3) Stable state definition: A stable state for a network
can be defined by the fact that each router has the same
information about the whole topology. So if topological
changes (caused by failure or new link/router) are sufficiently
separated in time, every router obtains all information
necessary at the end of a fairly short time. We just have
to ensure that signalization (Link State Advertisements and
validation messages for route validation) packets always
take the same route to be sure that information is passed on
in the order of appearance. To ensure this property, every
signalization message is always aimed towards the same next
hop for each destination. We also have to check that old
information is ignored by a numbering system of validation
messages. Moreover, routes are available as soon as DT has
been computed following the arrival of a new Link state
advertisement (LSA) arrives, even if the incoming interface
is not in use. The routers send the traffic on their best cost
paths for all destination until the validation messages are back
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to permit multipath routing. We also have to guarantee that
the validity test is made with coherent information. Indeed,
routers do not have to know more topological information
than their neighbors in order to have a coherent network view.
Routers can add some routing table rows between each other
for their entry interfaces only if they have a same topology
view. To prevent incoherence, neighbor nodes must check if
the validation messages they receive take into account the
last "Link State Advertisement" they have received. If not,
they can discard this message. To avoid this issue, the last
validation message on one-hop neighborhood removes older
entries which concern the same incoming interface. And the
last received LSA reset old entries for local traffic.

4) Mechanisms for extensibility: Hopefuly, the routing
table does not have to consider every destination on the
Internet. Border routers announce external destination
prefixes and their exceptions to every network router. Hence,
if there are multiple possible border routers for the same
destination (or rather destination prefix), the multipath module
can take advantage of this multiple solution associated with
the multiple paths computed for concerned border routers.
Our procedure just considered internal routers of its domain
as a destination in DT computation and validation stage.
Basically, as OSPF does also to route towards external
destinations, we use an indirection table between IP prefixes
and borders routers to perform routing. However, when
several border routers announce the same prefix, we have
to find a new mechanism to avoid loop because p-LA only
works for a unique destination. This is not in the scope of this
document, but we currently work on this issue. Consequently,
the extensibility in terms of computation complexity and load
depends of the domain size. Nevertheless, our procedure can
be used independently between neighbor domain, without
needing any further extensibility if border routers do not
announce identical prefixes.

IV. EVALUATION AND SIMULATION

A. Experiments description

We used Network Simulator 2 (ns2 [1]) to evaluate our
technique. We have implemented an extension of the link-
state routing protocol provided by ns2 and extended the node’s
routing classifier attributes. We first evaluated performance
of our protocol in topological terms, on the French renater4
[2] topology (see figure 4 for a simplified map) and on
three other backbone networks (Opentransit, Alternet and
GlobalCrossing). Our simulations and evaluations do not study
data traffic, but only analyze the routing capacities on an empty
network. Hence, we do not have to run several simulations
to compute an average value with a given confidence interval
because presented results are determinists (we do not introduce
traffic with a random generator to analyse a particular traffic
distribution). We present results according to node degree and
we compute, with ns2 and our extension for multipath routing,
the total number of loop free open routing rows (computed by

PARIS

LYON

BORDEAUX

TOULOUSE

Fig. 4. An approximation of Renater4 topology

DT and validated with p-depth Loop Avoidance) depending
on the node degree. We evaluate this parameters on these four
networks, and give the results in the next subsection. These
network topologies have been obtained through the "mrinfo"
tool. For networks where native multicast routing is enabled
and "mrinfo" is not filtered, this tool gives precise maps of
router interconnections (see [21]). Renater, Opentransit, Global
Crossing and Alternet are such networks. Network topology
characteristics are gathered in table III. We have considered

Network name Node number Edge number Average degree
Renater 78 198 2.54
Open Transit 76 206 2.71
Alternet 83 334 4.02
Global Crossing 102 370 3.62

TABLE III
EVALUATION NETWORKS

each link as symmetric in valuation and existence (all links
are duplex links). The valuation of each link is considered
equal so that the metric is equivalent to the number of hops.
The presented results for the "Loop Free Alternate" (LFA [4]
or "Loop Free Invariant" in [24]) solution are evaluated as
our incoming interface proposition. We have considered, for
each pair of source and destination, the incoming link used
for packet transit even if it is not actually taken into account.
Indeed, for LFA proposition, there is no difference in treatment
of transit traffic or local traffic. In figure 5, we have represented
a particular case where routers noted A and D (which have a
degree of 3) cannot serve for transit traffic with LFA technique.
If we consider that all links are equally valuated, then no
router can route its traffic via A or D. Alternate paths via these
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routers cannot, for any destinations in the network except their
own, verifies the relation (2). Hence, when LFA is used on a

B

A

C

D

Fig. 5. An example of router triangle configuration

network, some routers cannot route traffic for neighbor routers.
That is why, in figure 6 given in next subsection, some routers
do not appear in router distribution with LFA utilization. Our
validation protocol permits to use each router (with degree at
least 2) for transit traffic in the four evaluation networks.

B. Results

Our evaluation topologies tries have different kinds of
degree distribution (see figure 6). The first two (Renater and
Opentransit) seem to have a power law distribution whereas the
last two seem to be more uniform. The dashed boxes represent
the number of nodes, whose degree is given in x, which accept
validation for transit traffic with condition (2). Our procedure
allows using every router for packet transit even with p=1.
The first evaluation (whose results are illustrated in figures
7, 8, 9 and 10) computes the average of the total number of
routing table entries by router, having the same degree, for all
pairs {destination, incoming interface}. When the relation (2)
is used, each valid row in the routing table of a router r is the
same for local traffic and for routers linking to r and which
have selected router r as a valid NH for transit traffic. That
is why to be fair with lfa, we compare this value only to the
open rows for transit traffic rather than the routes open for
local traffic.
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Fig. 6. Degree node distribution for each tested network

On figure 6, we can already notice that our technique
allows using much more routers for multipath routing than

with condition (2), especially for routers which have only
two duplex links (except for Renater). The reason is that
every router of degree 2 which is an element of a router
triangle (see figure 5) can never be used by its neighbor
for multipath routing if the metric is the number of hops
as in our study. The number of routes linking a source
S and a destination D depends entirely on the number of
valid next hops on intermediary routers between S and
D. This is why we focus our evaluation on the number of
entries in the routing table for preceding router (transit traffic).

1) Number of validated next hops: This study mostly com-
pares the use of condition (2) presented in section 2 against
our more flexible condition in order to highlight, in various
topological cases, the advantages of our method (in next four
figures, boxes are superposed). For these preliminary results
we do not take propagation delays into account. We note a
couple (incoming interface, destination) : (I,D), the y-axis
represent the average of the total amount of validated next hops
for all couple (I,D) on each nodes whose degree is given on
x-axis. Moreover, when LFA is used, the routing table does not
include as many entries as shown as the figures, but we have
multiplied the real number of entries computed for local traffic
by the number of incoming interfaces of concerned routers.
This average can reach at most:

k−(x)× k+(x)× |N |

This means, on the network considered in figure 7, that a router
of degree 8 has one the average 1200 possible routing entries
for all couple (I,D). It can be interpreted in the following
way: a router of degree 8 has 1200/8

77 ≈ 2 valid routing
entries by couple (I,D) (77 is the number of destinations
in Renater). This does not necessarily concern all destinations
and incoming link because a router is not necessarily a valid
outgoing link for a couple (I,D). This is why, in reality, a
router of degree 8 has much more than two valid next hops by
couple (I,D) with our procedure. In the same way, the LFA
proposition validates less than one next hop by couple (I,D).
On the four networks we can observe that the number of
entries in routing table increases depending on the router
degree. More precisely, we notice that our technique increases
faster according to router degree than with LFA solution. This
means that our method does not multiply routing table size
only because of the number of incoming interface considered,
but also because it benefits from the number of possible
outgoing links.
In the one hop validation (p=1) version, we already notice,
for all simulated networks, an impressive increase of routing
possibilities compared to LFA solution. In figure 7 and 8, we
notice that our method computes much more valid routing
entries although these networks are poorly connected (less
than 3 duplex links per router on average). Moreover, the ratio
between routing entries computed with our method and LFA
technique increases approximatively in a linear way according
to router degree.
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Fig. 7. Renater: 78 routers, 198 links
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Fig. 8. Opentransit: 76 routers, 206 links

The last two networks (figures 9 and 10) are larger and more
connected backbones (an average larger than 3 duplex inter-
faces per router). Hence, in comparison with less connected
networks, the number of routing table entries is often larger
for a given degree.
We also notice on these networks a greater benefit in routing
entries validation with the depth validation procedure (p>1)
especially with routers of high degree (see figure 8 and 10).
However, computation complexity and signalization overheads
generated by p-depth validation does not bring sufficient
advantages to be really useful particulary on networks such
as Renater and Alternet.

Our protocol significantly improves the number of
validated outgoing NHs and improves the distributed
redirection capacities of traffic in the case of congestion or
failure. Furthermore, maximum flow can potentially increase
as compared with existing propositions, so it ensures a greater
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Fig. 9. Alternet: 83 routers, 334 links
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Fig. 10. Global Crossing: 102 routers, 370 links

potential throughput between each couple (S,D). Indeed,
for each pair (S,D) the number of routes validated with
our method is always larger than with existing distributed
propositions. The number of routes between routers S and
D depends on the number of validated NHs (for concerned
transit traffic) positioned on routers which are able to join S
and D. For example, on Renater network, our method (with
p=3) validates 17 routes from Strasbourg to Pau ranging
from 6 to 11 hops. For routers close to each other, some
validated routes can be very much longer than the shortest
one. This kind of routes is probably only useful for security
and restoration aspects whereas the shortest routes are more
suitable for load balancing.

2) Convergence time: We have worked out two scenarios
to test the convergence time to achieve stability after failure
on Renater 4 topology. Obviously, we choose failures keeping
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a connected network. The first one is a central link failure
(see figure 11) whereas the second one is a border link failure
(figure 12). The payload of each signalization messages, LSA
and validation messages, is simulated with ns2 according to the
network size. We consider in our simulations that the valida-
tion packet size is proportional to |N|. We have also simulated
the real propagation delays of each link. For that, we have
used an orthodromic method which allows us to determine the
physical length of each link fairly precisely. We consider that
each link bandwidth on the network is equal to 2,5 Gigabits/s.
However, we have not emulated the computation time either
for DT overhead compared to "Dijkstra" or for validation tests
because we consider it negligible. Both graphs in figure 11
and 12 represent the simulation time on the x-axis and each
horizontal line (on the y-axis) represents a router ordered by
LSA reception time. A row represents the detection period and
validations periods for an unique router. The arrows with heads
on both figures 11 and 12 show the duration of the validation
periods whereas the simple arrow shows the LSA reception
period. Considering that validations are distributed between
neighbors (each router writes some new routing entries for its
neighborhood), we have considered all validation messages for
both local traffic and transit traffic. This is why validation of
depth 1, received by a router r, can fairly begin "at the same
time" (just after thanks to a synchronization mechanism to
ensure that the LSA is treated first) that r receives its first
LSA. Duration times given in presented results ignore the
unsuccessful validation messages.
In the first scenario the connection (two duplex links) linking
Lyon to Paris falls down after 5 seconds whereas in the second
scenario there is just one duplex link failure between Bordeaux
and Toulouse. The total validation phase lasts less than 20 ms
to produce the entirely new routing table on every router in
both scenarios.
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Fig. 11. Convergence time on Renater after link PARIS⇔LYON fails

We observe that there are more successful validations in

 0

 10

 20

 30

 40

 50

 60

 70

5 5,005
5,01

5,015
5,02

N
od

es
 (o

rd
er

ed
 b

y 
de

te
ct

io
n 

tim
e 

po
si

tio
n)

Time(s)

Convergence time

detection:
depth 1:

depth 2:
depth 3:

Fig. 12. Convergence time after link BORDEAUX⇔TOULOUSE fails

small depth as we have already noticed in the precedent
subsection. Moreover, we also observe that the validation
procedure only slightly lengthens the time of convergence:
approximately and at worst, 3ms for a depth of 1, 6ms
for a depth of 2 and 10ms for a depth of 3. Two main
phases should interest us. The time between the failure and
the last LSA received, and the time which separates this
one from the end of the last validation phase according to
the search depth. These periods will be more sensitive to
propagation delays in large networks especially for detection
period because the network maximal distance, its diameter,
is generally higher than the maximal depth we use for the
validation protocol. On the Renater network, computed link
propagation delays are always less than 2ms and often still
much smaller. However, for p > 2 the validation convergence
time already begins to become important for not so many
validated routes added. This is why we can conclude that p=2
is a good setting to obtain the best ratio between the number
of validated NHs and the amount of time to achieve stability.
The main difference between the two simulation experiments
is the failure localization. Indeed, detection period and
position is conditioned by failure learning following a LSA
reception. The LSA reception order depends as well on the
position of the link which fails and on the network topology
characteristics as well. However, the failure localization does
not seem to affect the validation phase period.

3) Discussion: During validation time and especially dur-
ing detection period, load balancing cannot be optimal because
a router does not know entirely its routing table. In detection
phase the presence of loops is still possible as with OSPF
transient state. Nevertheless, we can easily imagine a mecha-
nism of traffic balancing which shifts the load on an alternate
NH even before the best NH for a destination is computed.
Indeed, if routers have good probing measures for each of
their NH’s, they can decide to shift the load before receiving
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a LSA. Hence, two mechanisms for re-routing can coexist. The
first one allows avoiding failure closest to where it occurs, and
the second one optimizes route computation and use. These
mechanisms are complementary and allow the network to react
quickly to congestion and to recompute optimal routes in a
longer time frame. We just have to lay down the adequate load
distribution policy according to measured load oscillations.
[12] is a good analysis of convergence time issue for fast
rerouting in order to achieve IP restoration. A main goal of
TE is also to use different routes for different Quality of
service (QoS) requirements. The diversity of validated routes
can really be useful in spite of their length. Indeed, our
method computes routes which are sometimes much more
costly than the best one, but which can really appear important
for protection and restoration as well as for some TE aspects
as QoS.

V. CONCLUSION AND PERPECTIVES

In this article, we have presented our distributed multi-
path routing scheme. Our technique computes and validates
a number of routes larger than with existing propositions
because of the distinction made on the flow entries: the
incoming interface. Potentially with a good load balancing
policy, the throughput between a pair of nodes can improve
thanks to the larger number of routes. The associated overhead
is proportional to the routers degree so that the routing table
is a function of the number of incoming interfaces and the
number of viable next-hops. The validation phase is a very
light procedure in its basic version (one or two hop validation
procedure), but can greatly increase the number of viable next
hops for each destination. We have shown with ns2 that the
convergence time to achieve routing stability when failures
occur is fairly close to an unipath link-state protocol. We have
also demonstrated the loopfreeness of our procedure when
routers are not set with the same depth parameter or even not
set with multipath routing at all. Our future work will focus
on router communication to provide online load distribution
with real-time traffic measurements. In this perspective, we
will try to develop some mechanisms for sharing traffic over
multiple paths without leading to oscillations and TCP mis-
ordering issue. Another goal for our work is to see if it is
possible to extend it to wireless environment (such as ad-hoc
network) which may benefit even more from the multipath
routing advantages, but is more sensitive to the convergence
time issue because of mobility.
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