

MERLIN Measure the Router Level of the INternet

<u>Pascal Mérindol</u>, Benoit Donnet, Jean-Jacques Pansiot, Matthew Luckie, Young Hyun

Kaiserslautern - June 2011

Next Generation Internet 2011

Agenda

- Topology Discovery Background
- Limitations using mrinfo-rec
- A new probing tool: MERLIN
- Deployment and IGMP filtering
- Towards the MERLIN platform ?

Topology Discovery

- Internet seen as a dynamic graph
 - ✓ of IP interfaces
 - traceroute, route_record
 - ✓ of routers
 - → alias resolution : ally, iffinder, ...
 - ✓ of Autonomous Systems
 - IP to AS mapping (routeview project), router to AS mapping ?
- Goals
 - ✓ IP network models & simulations
 - ✓ *ground truth* input for topology generation

mrinfo

- Topology discovery using mrinfo
 - Uses IGMP messages
 - ASK_NEIGHBORS
 - ✓ NEIGHBORS_REPLY
 - Output
 - All multicast interfaces of a given router
 - All multicast neighbors/links
- mrinfo applied recursively
 - mrinfo-rec
 - ✓ probe all neighbors
 - ✓ daily based

mrinfo-rec.

SPRINT - 2006

- Global Limitations
 - multicast scope
 - → IGMP filtering (local and transit)
- Technical Limitations
 - IGMP fragmentation
 - lack of multiplexing (no port number)
- Advantages
 - network friendly probing: 1 probe injected per router
 - native router level vision: no need for alias resolution
 - forwarding independent: backup links visible [IMC2009]
 - → layer-2 vision: distinguish the IP layer over MAC [IMC2010]

Limitations

- mrinfo-rec: ~ 4 years of daily collected data
 - → ~ 10000 routers ~ 100000 IP $\sim 300-800$ AS
- Only a single vantage point in Strasbourg
 - IGMP transit filtering issue: some (borders) routers do not forward IGMP requests/replies
- IGMP fragmentation: large Cisco routers «IGMPfragment» their responses (576 bytes at maximum)
- No multiplexing: use multiple IP addresses or ignore replies where target IP ≠ reply IP ?

IGMP fragmentation

- A few number of routers generates fragments ($\sim 6\%$)
- ...but they generates almost half of the replying traffic !

Limitations per router brand

Fingerprints ability

Probable brand	Version ⁴	Proportion
Cisco IOS	11.*, 12.*, 15.*	78.25%
Juniper	3.255	7.61%
Not classified	[0-9].*, 21.3, 21.95, 37.90, 60.1, 76.0	13.12%

- Cisco routers «IGMP-fragments»:
 - how to collect subsequent responses ?
- Juniper routers IP-fragments: OK transparent for mrinfo-rec but not correct according to the draft
- Some non Cisco routers (~10%) have an «instead of» behavior: the IP of reply is not the one targeted!
 - how to speed up the probing process ?

MERLIN

- Two parallel processes: *send & receive*
 - replies are indexed on the *src addr* (multiplexing)
 - fragments having the same *src addr* are merged (fragmentation)
- History process to avoid probing redundancy
 - hash based for performance (for all local IP interface)
- Two seeding lists: *static & recursive*
 - recursive first approach

Reprobing risk and Calibration

• Two probing modes:

- recursive, $\alpha = 0.5$ sec \blacktriangleright to elapse probes and reduce reprobing risk
- static, $\beta = 0.05$ sec \blacktriangleright to speed up the probing campaign when the reprobing risk is low
- Replies are flushed every 5 sec: fragments reassembling (~0.1 sec)

MERLIN behavior

• Recursion does the job first and then static list finishes it..

Deployment

• 6 vantage points:

 (Louvain-la-Neuve - Belgium, Napoli - Italy, Strasbourg - France), two in North America (San Diego - USA, Redwood City - USA), and one in Oceania (Hamilton -New Zealand)

• The probing hitlist is made of:

- 1.2 M Caida's Archipelago addresses;
- ``missing middle" IP (Archipelago);
- 3,580 addresses from known topologies;
- ▶ 24,429 addresses from a Tier-1 ISP;
- 155,674 Reverse Traceroute addresses;
- 224,762 mrinfo-rec addresses replying on the four previous datasets.

- ► ~50,000 unique routers in 3000 ASes
- A global and non uniform coverage greater than 5%

Unicast lacks

• The reply's *src addr* may not appear in the list of interfaces

IGMP filtering: monitor's utility

• The utility of using several vantage point (vp) is high: seen by 1

- Some vps are less subject to IGMP filtering
- Each vp brings its unique contribution
- Even inside a given AS, the utility of several vps is high

The MERLIN platform

MERLIN monitors can be coordinated via a central server

- avoid redundancy and improve efficiency
- use active and targeted traceroute for seeding and reassembling (+ alias resolution)
- The MERLIN platform targets multicast enabled AS cores

Conclusion

- **IGMP probing** is a useful for several reasons
 - → describe a connected multicast topology at the router level (no need for alias resolution)
 - can discover backup links (no forwarding dependence)
 - → able to natively infer L2 devices (hybrid bipartite graph)
 - efficient probing scheme
- MERLIN solves mrinfo and mrinfo-rec lacks
 - → technical issues: fragmentation and multiplexing
 - → is fed per traceroute and recursive seeds
 - IGMP filtering and unicast lacks can be solved
 - → can be plugged in an client/server platform

Questions ?

http://svnet.u-strasbg.fr/merlin/

- ✓ Pietro Marchetta, Pascal Mérindol, Benoit Donnet, Antonio Pescapé and Jean-Jacques Pansiot.
 Topology Discovery at the Router Level: A New Hybrid Tool Targeting ISP Networks.
 In IEEE JSAC, Special Issue on Measurement of Internet Topologies, 2011.
- ✓ Pascal Mérindol, Benoit Donnet, Jean-Jacques Pansiot, Olivier Bonaventure.
 On the Impact of Layer-2 on Node Degree Distribution
 In Proc. ACM/USENIX Internet Measurement Conference (IMC), November 2010.
- ✓ Jean-Jacques Pansiot, Pascal Mérindol, Benoit Donnet, and Olivier Bonaventure.
 Extracting Intra-Domain Topology from mrinfo Probing
 In Proc. Passive and Active Measurement Conference (PAM), April 2010.