

Detecting Hidden Broken Pieces of The Internet

PhD Defense by Julian M. Del Fiore

February 08, 2021

Outline

- Background, Research Goal and Questions
- Part I. Filtering the noise to reveal BGP lies
- Part II. Success and Failure of IXPs in Latin America
- Part III. The Art of Detecting Forwarding Detours
- Conclusions and Future Work

Outline

- Background, Research Goal and Questions
- Part I. Filtering the noise to reveal BGP lies
- Part II. Success and Failure of IXPs in Latin America
- Part III. The Art of Detecting Forwarding Detours
- Conclusions and Future Work

Background

• Autonomous Systems (ASes) are independent networks

- Autonomous Systems (ASes) are independent networks
- The Internet is an Interconnection of Ases

- Autonomous Systems (ASes) are independent networks
- The Internet is an Interconnection of Ases
- ASes establish business relationships
 - Customer-to-provider \$\$\$
 - Peer-to-Peer Free

- ASes run an Internal Gateway Protocol (IGP)
 - Deals with intra-domain routing

- ASes run an Internal Gateway Protocol (IGP)
 - Deals with intra-domain routing

- ASes run the Border Gateway Protocol (BGP)
 - Deals with the inter-domain routing

- ASes run an Internal Gateway Protocol (IGP)
 - Deals with intra-domain routing

- ASes run the Border Gateway Protocol (BGP)
 - Deals with the inter-domain routing

- ASes peer at Internet Exchange Points (IXPs)
 - Peer-to-peer relationships at a large scale

- Any system may have broken pieces
 - Problems, errors, limitations, etc...

- Any system may have broken pieces
 - Problems, errors, limitations, etc...
- The Internet is a complex system
 - Protocols, facilities, networks
 - Hardware, software
 - Network operators

- Any system may have broken pieces
 - Problems, errors, limitations, etc...
- The Internet is a complex system
 - Protocols, facilities, networks
 - Hardware, software
 - Network operators
- The Internet is "big"...
 - Composed of 70K ASes
 - Point of observation matters

CAIDA's IPv4 AS Core February 2017

- Any system may have broken pieces
 - Problems, errors, limitations, etc...
- The Internet is a complex system
 - Protocols, facilities, networks
 - Hardware, software
 - Network operators
- The Internet is "big"...
 - Composed of 70K ASes
 - Point of observation matters

CAIDA's IPv4 AS Core February 2017

Research Goal: Detecting Hidden Broken Pieces of The Internet

Q1: Can we detect BGP lies?

• Expected ≠ Practice

Q1: Can we detect BGP lies?

• Expected ≠ Practice

- Q2: Are there failed IXPs? Why?
 - IXPs with low coverage

Q1: Can we detect BGP lies?

• Expected ≠ Practice

- Q2: Are there failed IXPs? Why?
 - IXPs with low coverage

Q3: Can we model and detect detours?

• Expected ≠ Practice

Outline

- Background, Research Goal and Questions
- Part I. Filtering the noise to reveal BGP lies
- Part II. Success and Failure of IXPs in Latin America
- Part III. The Art of Detecting Forwarding Detours
- Conclusions and Future Work

Background

Border Gateway Protocol (BGP)

- For each external prefix P...
 - The control path (CP) that should theoretically be followed
 - The data path (DP) is the path used in practice

Problem Statement

What are BGP lies?

When the control path (CP) and data path (DP) for a prefix P do not match

What are BGP lies?

When the control path (CP) and data path (DP) for a prefix P do not match

AS B is lying to AS A

What are BGP lies?

When the control path (CP) and data path (DP) for a prefix P do not match

AS B is lying to AS A

BGP lies may result from malicious behavior or technical limitations

Why detecting BGP lies (CP ≠ DP)?

- If not, what is the point of using BGP?
- Allows to detect possible malicious ASes
- Would allow to troubleshoot ASes

Detecting BGP lies

Technical Considerations

- Space-synchronization
 - Measurement platform
- Address space and time synchronization
 - Which DP should be compared with which CP
- IP-to-AS mapping
 - CPs come as AS-paths but DPs as IP-paths

Technical Considerations

- Space-synchronization
 - Measurement platform
- Address space and time synchronization
 - Which DP should be compared with which CP
- IP-to-AS mapping
 - CPs come as AS-paths but DPs as IP-paths

Space-synchronization

- Control paths are obtained from a given router
- Data paths are gathered from a VP
- To be comparable, DPs need to go through the router that shared the CPs

IP-to-AS mapping

• While CPs are AS-paths, DPs are obtained as IP-paths

CP: AS A, AS B, AS C... DP: IP1, IP2, IP3, IP4...

To compare them, an IP-to-AS mapping tool is needed !

The problem of IP-to-AS mapping

Noise or sources of errors

> AS siblings

Noise or sources of errors

Noise or sources of errors

Our solution

A framework to detect BGP lies

✓ Input: CPs and DPs from a co-located VP
✓ Output: rate of BGP lies

A framework to detect BGP lies

✓ Input: CPs and DPs from a co-located VP
✓ Output: rate of BGP lies

Preparation stage:

- Address space synchronization
- Time synchronization
- Basic IP-to-AS mapping
- Mapping relaxation
 - AS siblings
 - Third-party addresses
- Wildcards correction stage
 - Missing hops

A framework to detect BGP lies

✓ Input: CPs and DPs from a co-located VP
✓ Output: rate of BGP lies

Preparation stage:

- Address space synchronization
- Time synchronization
- Basic IP-to-AS mapping
- Mapping relaxation
 - AS siblings
 - Third-party addresses
- Wildcards correction stage
 - Missing hops

Results

Dataset

- Deployed 8 co-located VPs
- CPs collected every two hours
- DPs gathered targeting 80K destinations per day
- > We run measurements multiple days (at least 13 days)

Filtering the noise with our framework

- VP 6,7: High rate, high variance
- VP 1-5. Quite effective, low variance
- Ground truth: BGP lies due to technical limitations in VP 7
- ...then in VP 6 too? ...and VP 1-5 malicious behaviour?

Conclusions

- A framework to detect BGP lies filtering the IP-to-AS mapping noise
- Deployed more co-located VPs than previous work
- Run the first time-analysis comparing CPs and DPs
- Patterns in results: technical limitations vs malicious Ases?

Outline

- Background, Research Goal and Questions
- Part I. Filtering the noise to reveal BGP lies
- Part II. Success and Failure of IXPs in Latin America
- Part III. The Art of Detecting Forwarding Detours
- Conclusions and Future Work

Why IXPs?

• Reshaped the structure of the Internet

Why Latin America?

- Little previous work
- Discovered "new" datasets

Why IXPs?

• Reshaped the structure of the Internet

Why Latin America?

- Little previous work
- Discovered "new" datasets
- …and I come from there

General Knowledge on IXPs

IXP Members

ASes that connect to the IXP and announce IP prefixes

Visible ASes of an IXP

IXP members + ASes seen in AS-paths announced by members

Preliminary Results

Dataset

- Control paths gathered in the IXPs
 - Members
 - Set of visible Ases
 - IP addresses announced
- Regional Internet registry files
 - Nationality of ASes

Success or Failure?

- Most IXPs in Latin America have low impact, or are failed IXPs
 - Less than 30 members
 - Less than 2M IP addresses announced
- The exception are Argentina, Brazil and Chile, the successful ones

Most visible ASes in Latin American IXPs are local ASes

... consider color as nationality....

In the countries with Failed IXPs, are IP addresses fairly distributed among local Ases?

Maybe a monopolistic AS prefers not to peer in the IXP

How to measure whether the distribution is fair or not?

- We use the Herfindahl Hirschman Index (HHI)
 - Select a country
 - Choose 2 IPs of that country at random
 - Odds they belong to the same AS

How to measure whether the distribution is fair or not?

- We use the Herfindahl Hirschman Index (HHI)
 - Select a country
 - Choose 2 IPs of that country at random
 - Odds they belong to the same AS
 - The closer to 0, the more fair
 - The closer to 1, the more concentrated

Results

Dataset

- Control paths gathered in the IXPs
 - Members
 - Set of visible Ases
 - IP addresses announced
- Regional Internet registry files
 - Nationality of Ases
- Prefix-to-AS files
 - IP addresses that are actively used on the Internet

• Countries with more than 1M active IP addresses are displayed

- Countries with more than 1M active IP addresses are displayed
- AR, CL, BR: largest IXPs, lowest HHI

- Countries with more than 1M active IP addresses are displayed
- AR, CL, BR: largest IXPs, lowest HHI
- UY, VE, DO: no IXP at all

- Countries with more than 1M active IP addresses are displayed
- AR, CL, BR: largest IXPs, lowest HHI
- UY, VE, DO: no IXP at all
- CR, MX: there is an IXP, but monopolistic local ASes not peering

Conclusions

First to study Latin American IXPs in depth

The region has many failed IXPs

Visible ASes are mainly local ASes

Possible correlation between failed IXPs and concentrated markets

Outline

- Background, Research Goal and Questions
- Part I. Filtering the noise to reveal BGP lies
- Part II. Success and Failure of IXPs in Latin America
- Part III. The Art of Detecting Forwarding Detours
- Conclusions and Future Work

The basics

• Routing inside networks

- Routing inside networks
- Links have a cost according to some metric

- Routing inside networks
- Links have a cost according to some metric
- The path with minimum cost is used

- Routing inside networks
- Links have a cost according to some metric
- The path with minimum cost is used

			Routes			
IGP			R_1	R_2	R_3	R_4
		P_1	••			
		P_2	••			
Prefixes	_	P_3	00 00			
	2021	P_4	00 00			
	D	P_5	•• ••			
	_	P_6	00 00			
		P_7	00 00			
		P_8				
Load Balancing (LB)

- From one to many best IGP paths
- Usually deployed with equal-cost multipath (ECMP)

Traffic Engineering (TE)

- Allows to craft paths "by hand"
- The crafted paths meet some requirements, e.g. low delay

Forwarding Detours (FDs)

• When the forwarding route diverges from LB and TE paths

Why detecting FDs?

- FDs relate to unexpected paths being used
- Possible negative impact on performance

Methodology to detect FDs

Forwarding Pattern - Run measurements and find the matrix

F

Prefixes

E	xar	npl	e I			e II						
B		Rou	utes		L	B	Routes					
E D	R_1	R_2	R_3	R_4	F	E D	R_1	R_2	<i>R</i> ₃	R_4		
P_1	() ()	() ()				P_1				00 00		
P_2	() ()	() ()				P_2				00 00		
P_3	() ()	() ()				<i>P</i> ₃				00 00		
P_4			00 00		ixes	P_4			00 00			
P_5	() ()	() ()			Pref	P_5	() ()	() ()				
P_6	() ()	() ()				P_6) ()) ()				
P_7						P_7						
P_8) ()	() ()				P_8				00 00		

	E	kan	nple	e l			Example II						
LB TE FD			Rou	utes			L	B					
		R_1	R_2	R_3	R_4		F	D	R_1	R_2	<i>R</i> ₃	R_4	
	P_1	•	•					P_1				00 00	
	<i>P</i> ₂) ()) ()					<i>P</i> ₂				00 00	
	<i>P</i> ₃) ()) ()					<i>P</i> ₃				00 00	
ixes	<i>P</i> ₄			00 00			Prefixes	<i>P</i> ₄			00 00		
Pref	P_5) ()) ()					P_5) ()) ()			
	<i>P</i> ₆	•	•						<i>P</i> ₆) ()) ()		
	<i>P</i> ₇				00 00			<i>P</i> ₇				00 00	
	<i>P</i> ₈) ()) ()					P_8				00 00	

1. Identify prefixes related to the same routes

	Ex	kan	nple	e I			Example II						
L	B	Routes					L	B	Routes				
FD		R_1	R_2	R_3	R_4		F	D	R_1	R_2	R_3	R_4	
	P_1	•	•					P_1				00 00	
	<i>P</i> ₂) ()) ()				Prefixes	<i>P</i> ₂				00 00	
	<i>P</i> ₃) ()) ()					<i>P</i> ₃				00 00	
ixes	P_4			00 00				P_4			00 00		
Pref	P_5) ()	•					P_5	•	•			
	P_6	•	•					P_6	•	•			
	<i>P</i> ₇				00 00			<i>P</i> ₇				00 00	
	P_8	•	•					P_8				00 00	

1. Identify prefixes related to the same routes

- 1. Identify prefixes related to the same routes
- 2. Group the related prefixes in sets

- 1. Identify prefixes related to the same routes
- 2. Group the related prefixes in sets

	Example I								Exa					
	LB			Rou	ites				LB		Rou	ites	:es	
	FD		R_1	R_2	R_3	R_4		FD		R_1	R_2	R_3	R_4	
	xes	P_1, P_2 P_3, P_5 P_6, P_8						ixes	$P_1, P_2 \\ P_3, P_7 \\ P_8$				0000 0000 0000 0000	
Prefi		P_4			00 00			Pref	P_4			00 00		
		<i>P</i> ₇				00 00			P ₅ , P ₆	00 00	00 00			

- 1. Identify prefixes related to the same routes
- 2. Group the related prefixes in sets
- 3. Identify the LB set targeting router t

- 1. Identify prefixes related to the same routes
- 2. Group the related prefixes in sets
- 3. Identify the LB set targeting router t

- 1. Identify prefixes related to the same routes
- 2. Group the related prefixes in sets
- 3. Identify the LB set targeting router t

4. Compute #pfxs in each set: (6, 1, 1) and (5, 1, 2)

- 1. Identify prefixes related to the same routes
- 2. Group the related prefixes in sets
- 3. Identify the LB set targeting router t

- 4. Compute #pfxs in each set: (6, 1, 1) and (5, 1, 2)
- 5. Turn it into proportions: (0.75, 0.125, 0.125) and (0.625, 0.125, 0.25)

- 1. Identify prefixes related to the same routes
- 2. Group the related prefixes in sets
- 3. Identify the LB set targeting router t

- 4. Compute #pfxs in each set: (6, 1, 1) and (5, 1, 2)
- 5. Turn it into proportions: (0.75, 0.125, 0.125) and (0.625, 0.125, 0.25)
- 6. Compute the *n* number of sets ... in this case n = 3 for both examples...

- 1. Identify prefixes related to the same routes
- 2. Group the related prefixes in sets
- 3. Identify the LB set targeting router t

- 4. Compute #pfxs in each set: (6, 1, 1) and (5, 1, 2)
- 5. Turn it into proportions: (0.75, 0.125, 0.125) and (0.625, 0.125, 0.25)
- 6. Compute the *n* number of sets ... in this case n = 3 for both examples...
- 7. Conclude that FDs occur if LB is associated to less than $\frac{1}{n} = 0.33$ pfxs...

- 1. Identify prefixes related to the same routes
- 2. Group the related prefixes in sets
- 3. Identify the LB set targeting router t

- 4. Compute #pfxs in each set: (6, 1, 1) and (5, 1, 2)
- 5. Turn it into proportions: (0.75, 0.125, 0.125) and (0.625, 0.125, 0.25)
- 6. Compute the *n* number of sets ... in this case n = 3 for both examples...
- 7. Conclude that FDs occur if LB is associated to less than $\frac{1}{n} = 0.33$ pfxs... 0.33 < 0.75 ... no FDs and 0.33 > 0.25 ... there are FDs 90

- 1. Identify prefixes related to the same routes
- 2. Group the related prefixes in sets
- 3. Identify the LB set targeting router t

...we are conservative!

- 4. Compute #pfxs in each set: (6, 1, 1) and (5, 1, 2)
- 5. Turn it into proportions: (0.75, 0.125, 0.125) and (0.625, 0.125, 0.25)
- 6. Compute the *n* number of sets ... in this case n = 3 for both examples...
- 7. Conclude that FDs occur if LB is associated to less than $\frac{1}{n} = 0.33$ pfxs... 0.33 < 0.75 ... no FDs and 0.33 > 0.25 ... there are FDs 91

Results

In the wild, FDs are a thing!

- We measure from 100 VPs
- We look for FDs between AS border routers (ASBRs) and request #pfxs > 100
- We find FDs in 25/54 Ases, with an heterogeneous distribution

Digging into the results: a binary pattern

• According to the FDs we found, all traffic detours or none does

Conclusions

Routing inconsistencies produce FDs

First methodology to systematically detect FDs

We built the first FD-detector and run measurements

FDs exist, distribute heterogeneously and have a binary pattern

Outline

- Background, Research Goal and Questions
- Part I. Filtering the noise to reveal BGP lies
- Part II. Success and Failure of IXPs in Latin America
- Part III. The Art of Detecting Forwarding Detours
- Conclusions and Future Work

Research Goal

- Any system may have broken pieces
 - Problems, errors, limitations, etc...
- The Internet is a complex system
 - Protocols, facilities, networks
 - Hardware, software
 - Network operators, people
- The Internet is "big"...
 - Composed of 70K ASes
 - Point of observation matters

Research Goal: Detecting Hidden Broken Pieces of The Internet

Research Questions...and answers!

Q1: Can we detect BGP lies?

• Expected != Practice

Yes, filtering the noise with our framework

- Q2: Are there failed IXPs? Why?
 - IXPs with low impact

In Latin America, yes. Possibly due to the presence of monopolistic local Ases

Q3: Can we model and detect detours?

• Expected != Practice

Yes²: Rles produce them; use our FD-detector

Publications

Contribution 1

Filtering the Noise to Reveal Inter-Domain Lies In Network Traffic Measurement and Analysis Conference (TMA) 2019 **Julián M. Del Fiore**, Pascal Merindol, Valerio Persico, Cristel Pelsser and Antonio Pescapè.

Contribution 2

A first look at the Latin American IXPs In SIGCOMM Computer Communications Review (CCR), January 2020 Esteban Carisimo, Julián M. Del Fiore, D. Dujovne, Cristel Pelsser, and J. I. Alvarez-Hamelin

Contribution 3

The Art of Detecting Forwarding Detours

Minor revision in IEEE Transactions on Network and Service Management (IEEE TNSM) 2021 Julián M. Del Fiore, Valerio Persico, Pascal Merindol, Cristel Pelsser and Antonio Pescapè.

Future Work

Short term: enlarging the measurements

- We used 8 co-located VPs to detect BGP lies
- Our study of IXPs relied on BGP data
- New contributions:
 - 1. Use co-located VPs placed in IXPs
 - 2. Run active measurements for the IXPs work

Medium term: digging more into FDs

- Currently, we focus on the detection of FDs
- New contributions:
 - 1. Detect the router introducing the FA leading to a FD
 - 2. Measuring impact of FDs on performance
 - 3. Building an FD-detector-lite leveraging (2)

Long term: topology discovery and LB studies

- The multipath discovery algorithm (MDA):
 - Discovers multi-path routing patterns
 - Probing cost updated following a mathematical model
 - Measurements on a per-prefix basis
 - Campaigns usually comprise multiple destinations
- New contributions:
 - 1. Two step measurement process (Topology Feedback, TF-MDA)
 - 2. Add network knowledge to probing model (Bayesian-MDA)
 - 3. Combine the ideas of (1) and (2) (Ultimate, U-MDA)

Thank you for your attention

Questions ?

Complementary Slides

You told me the Internet was perfect!

Yeah, in my dreams

BGP: Extended Background

Border Gateway Protocol (BGP)

- Announce the IP prefixes they own
- Relay announcements updating the messages
- Decision process to choose the best path
- Resulting AS-path as the control path (CP)
- Packets flow towards P through a data path (DP)

Border Gateway Protocol (BGP)

- BGP is run by routers called BGP speakers
- For each external IP prefix (P):
 - the next-hop (NH) to be reached
 - the control path (CP) that should theoretically be followed
- The data path (DP) is the path used in practice

Detecting BGP lies Technical considerations

Address space synchronization

- After the measurements, we have a "bag" of CPs and DPs
- Question...which DP should be compared with which CP?
- Each DP is associated with a given destination d
- Compare DP with the CP of the longest matching prefix

Time-synchronization

- The CP is not static, at t0 and t1 it may be different
- Imagine no BGP lies occur...then the DP also changes over time!
- To avoid false positives, then CPs and DPs need to be collected "close" in time

A basic IP-to-AS mapping method

□ For each IP address...

- Look for longest matching prefix
- Map to the first AS in the AS-path associated to that entry
- Collapse the repetitions

CP: A B C VS DP: I1 I2 I3 I4 I5 I6 I7 I8 P1 P1 P2 P2A A B DP: I1 I2 I3 I4 I5 I6 I7 I8A B C

AS-path

XYA

XZA

X W B

Prefix

P1

P2

P3

BGP lies: examples

Framework: Our filters

Mapping relaxation - SIB Rule

- SIB rule: Apply an AS-to-organization mapping
- We construct the mapping with CAIDA's AS Organizations Dataset

Mapping relaxation – TPAs Rule

- TPA rules: replace TPAs with wildcards.
- When only one IP maps to an AS, we label it as candidate TPAs (cTAPs)
 - looseTPA: all cTPAs are inferred to be TPAs
 - strictTPA: exclude cTPAs surrounded by cTPAs or missing hops

Wildcards Correction Stage (WCS)

- Try to infer a value for the wildcards and see if paths mismatch (MM)
- Note that wildcards are either missing hops or inferred TPAs.

Measuring Platform

Peer	Organization	ASN	CP-DP match [%]
isi	Los Nettos	226	77.92
uw	University of Washington	101	77.93
neu	Northeastern University	156	76.84
uth	University of Utah	210	69.51
grt	GRNet	5408	77.93
cle	Clemson University	12148	77.93
hm1	University of Strasbourg	2259	77.94
hm2	RGnet, LLC	3130	77.90

Modular Framework Different models, different results

Modularity

• Our framework allows to implement different noise-filtering models

	M	lapping Re	laxation	Wildcar	ds Correction
Model/Rules	SIB	looseTPA	strictTPA	${\tt match}^*$	$nomatch^*$
Raw	×	×	×	×	í
Upper	×	×	×	i	ii
Restricted	i	×	ii	iii	iv
Lower	(ii)	i	×	iii	iv

Mismatch (MM) rate in the wild

- The models implementing the mapping relaxation outperform the others
- The looseTPA does not outperform the strictTPA for much

Characterizing the mapping noise

Looking at the filtered noise

- In general, AS siblings and third-party addresses not combine
- The worse source of noises varies depending on the VP

Future Work BGP lies

Future Work BGP lies

All about Latin America And IXPs

Public Policies

	Country	AR	BO	BR	BZ	CL	CO	CR	CU	EC	HT	HN	MX	PA	PY	PE	TT
Spon	sored by	CABASE	Law	CGI	PUC	PIT CL	CCIT	Ex.Ord.	State	IXP.EC	AHTIC	CONATEL	IFT	SENACYT	SENATICS	NAP.PE	TTIX
Oper	ated by	CABASE	State	NIC.br	UoBZ	PIT CL	CCIT	NIC.cr	NAP.CU	IXP.EC	AHTIC	UNAH	CITI	InteRED	NIC.py	NAP.PE	TTIX
	Monitor	РСН		RVs/LGs	РСН	РСН		РСН		РСН	РСН	РСН	РСН		РСН		РСН
BGP	#Memb	127	x	1156	6	72	x	28	×	5	4	4	6	×	15	×	5
103	#AggIPs	7.9M		26M	67K	19.4M		401K		28K	102K	131K	795K		1.5M		196K

- B, Y and V represent state agencies, non-profit organizations and universities, respectively
- Governments involved in the creation of their national IXPs in more than 55% of the cases
- Similar to the European IXP model, in LatAm many non-profit orgs created and run IXPs

IXP networks topology

	CABASE	PIT-CL	IX.br	DE-CIX
CC	AR	CL	BR	DE
#IXPs in CC	28	5	31	5
ASN per IXP	✓	✓	×	✓
IXP facilities	1/IXP	1/IXP	PIXes	Sites
IXPs Linked	✓	✓	×	1
Enforced Policy	MMPP	×	×	×

CABASE

DS-prevalence vs #members

- IX.br-SP is the largest and the remaining in the TOP5 too
- IX.br is much larger than CABASE and PIT Chile
- Largest regional IXPs in cities that are economically central
- DS-prevalence if BR similar to DE, but AR and CL lower

Visible ASes: domestic impact and foreign attraction

- Ratio of local visible ASes to all active ASes (with AS rels) in each country
- Lately, values in LatAm similar to those in Europe. Similar for Africa.
- PIT Chile is surprising given it's a "young" IXP, as BKNIX is also

Visible ASes: foreign attraction

Reaching IXPs: transit members

1k-10k	16	404	12	299	118	11	25
100-1k	12	95	7	216	42	6	12
10-100	1	16	1	39	13	0	1
1-10	1	1	0	4	1	0	1
	CABASE -	IX.br-	PIT-CL-	DE-CIX	FR-IX	BKNIX	-XNI(

IV hr SD	ASN	16735	262589	7049	61832	28329
17.01-91	#	903	381	218	209	207
CARASE DIF	ASN	3549	52361	7049	19037	11664
CADASE-DUE	#	219	113	100	82	81
DIT Chile SCI	ASN	7004	22661	52280	19228	14259
	#	88	87	70	57	57

Reaching IXPs: non-transit members

Non-transit members: transit vs stub ASes

IXPs and concentration

Country Code

	UY		VE		CR		MX	
ASN	6057*	19422	8048*	6306	11830*	52228	8151	13999
$ip-cnt_{cc}$	$2.38\mathrm{M}$		$5.15\mathrm{M}$		$2.42\mathrm{M}$		$24.9\mathrm{M}$	
ip-cnt	$2.15\mathrm{M}$	90.1k	2.84M	629k	$1.52\mathrm{M}$	197k	$13.7\mathrm{M}$	$2.05 \mathrm{M}$
ip-frac	0.90	0.04	0.55	0.14	0.63	0.08	0.55	0.08

Routing Inconsistencies, Forwarding Alterations, Forwarding Detours

What produces FDs?

- **BGP(d):** the exit point to use to reach d
- **IGP o BGP(d):** the next-hop towards that exit point →

- Routing consistency
 - Agreement on BGP(d)

- Routing inconsistency (RI) *i*
 - Disagreement on BGP(d)
 - May lead to a FD
 - Due to scalability workarounds

- **BGP(d):** the exit point to use to reach d 🕻
- **IGP o BGP(d):** the next-hop towards that exit point ⇒

- **BGP(d):** the exit point to use to reach d 🕻
- **IGP o BGP(d):** the next-hop towards that exit point ⇒

- **BGP(d):** the exit point to use to reach d 🕻
- **IGP o BGP(d):** the next-hop towards that exit point ⇒

• Routing consistency – BGP(d) is the same for all routers

- **BGP(d):** the exit point to use to reach d 🕻
- **IGP o BGP(d):** the next-hop towards that exit point ⇒

- Routing consistency BGP(d) is the same for all routers
- Routing inconsistency (RI) routers disagree on BGP(d)

• Forwarding alteration (FA) – RI leading to a new route

Forwarding Detour (FD) – FA leading to a sub-optimal route 167

Conclusions

✤ A forwarding model

Two new concepts: Rles and FAs

***** Two theorems: $FDs \Rightarrow FAs \Rightarrow Rles$

Observable FDs are a lower bound of RIes

Full-FIB vs Partial-FIB

FDs: may be a set of routes

Forwarding Detour I

Forwarding Detour II

Forwarding Detour III

Load Balancing F-LB and C-LB

Load Balancing (LB)

- There exist different LB flavors:
 - F-LB: different destination, then route may change
 - C-LB: same prefix, same route

FD-detector
Exploration phase

- Run traces to randomly chosen destinations
- Identify ASBR couples (i, e) in each traversed AS X
- Trace router e and annotate routes traversed for each prefix

Exploration Phase			Prefix-Grouping Phase						Multi-Route Discovery Phase					
		-0		R_1	R_2	R_3	R_4			R_1	R_2	R_3	R_4	
		ow LB	\mathcal{P}_1	••					\mathcal{P}_1	••	۲		۲	
<i>P</i> ₁	<i>R</i> ₁	st/flo	\mathcal{P}_2		••				\mathcal{P}_2		••	۲	۲	
<i>P</i> ₂	R_4	r-de	\mathcal{D}_{a}						\mathcal{D}_{a}					
<i>P</i> ₃	R_2	Pel	/ 3						/ 3					
P_4	R_3		\mathcal{P}_4				••		\mathcal{P}_4		۲	••	۲	
<i>P</i> ₅	<i>R</i> ₃	sms		R_1	R_2	R_3	R_4			R_1	R_2	R_3	R_4	
P_6	R_4	anis	\mathcal{D}	-				,	\mathcal{T}					
P_7	R_2	lech	P_1						\mathcal{P}_1					
<i>e</i> /32	R_1	ed M	\mathcal{P}_2		••				\mathcal{P}_2					
		(-Bas	\mathcal{P}_3			••			\mathcal{P}_3					
		Prefix	\mathcal{P}_4				••		\mathcal{P}_4					

Detecting Forwarding Alterations

Forwarding Detour

Results detection of FD

Marginal utility

Merging-phase

Binary pattern

FDs per AS, ASBR couple and ingress-ASBR

ASBR-couples grouped by the same ingress-ASBR

Analysis per ingress-ASBR

BGP lies and FDs

BGP lies and FDs may be correlated

