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Université de Strasbourg (UdS)

LSIIT, UMR CNRS
Illkirch, France

{pansiot,cateloin}@unistra.fr

Abstract—Multipath routing allows for load balancing and fast
re-routing in order to improve the reliability and the effici ency
of the network. Current IP routers only support Equal Cost
MultiPath (ECMP) which guarantees that the forwarding paths
do not contain loops. However, ECMP provides limited path
diversity. In this paper, we present an efficient algorithm that
allows routers to enable more path diversity: our algorithm let
each router computes at least the two best first hop distinct paths
towards each destination and achieves a good tradeoff between
path diversity and overhead.

In addition, we propose a multipath routing scheme whose
goal is to combine fast re-routing and load balancing loop-free
routes. The low overhead of our scheme (no additional signaling
messages and low complexity) and the nature of its loop-free
rules allow to incrementally deploy it on current IP routers.
Using actual, inferred, and generated topologies, we compare
our algorithm to existing solutions.

I. I NTRODUCTION

Multipath routing allows for load balancing and fast re-
routing in order to enhance the network reliability and ef-
ficiency. Despite these potential benefits (e.g., [7] or [11]),
most IP networks still use unipath routing protocols such as
OSPF or IS-IS. With these routing protocols, the forwarding
engine only reacts upon topology modifications, intentional
or not, but not upon traffic variations. Dynamic multipath
routing (e.g., [45], [44], or [5]) can provide services such
as load balancing to reduce delays and improve throughput.
Furthermore, the recovery of an IP network after failures
depends on the time necessary for the convergence of the
underlying routing protocol. Pre-computed alternate routes can
be directly used as emergency exits without waiting for the
routing protocol convergence.

In the context of intra-domain multipath routing, current
IP routers only support Equal Cost MultiPath (ECMP) to
enable path diversity. This feature uses a simple variant ofthe
Dijkstra algorithm [13] where equal cost paths are inherited
during the computation of the Shortest Path Tree (SPT). The
optimality of sub-paths computed with ECMP ensures the
loop-freeness of this approach, but restricts the number of
valid forwarding paths. The advantages of ECMP are limited
to cases where equal cost paths exist. Note that IGP weights

can be modified to increase the level of protection of a network
([23]). However, if IGP weights are not tuned to favor the
ECMP utilization, then the number of router pairs between
which ECMP can use multiple equal cost paths is very low
as it is the case with the Abilene network which uses link
latencies as IGP weights.

There are two main approaches to avoid this limitation using
multiple unequal cost paths between a pair of routers. On the
one hand, source multipath forwarding schemes (e.g., [14] or
[25]) can use MPLS with a signaling protocol (such asRSVP-
TE) to establish the desired routes. On the other hand, hop
by hop multipath forwarding schemes can be used to limit the
signalization overhead. They do not require end-to-end signal-
ing, packet marking or another layer of encapsulation in the
data plane. However, routers must select and validate a subset
of their next hops such that their distributed composition does
not create forwarding loops (see [43], [44] and [46]).

In this paper we focus on this second type of schemes.
We propose a distributed forwarding scheme that computes
a set of loop-free routes allowing to enable fast reactions in
case of failure or congestion. Our approach is incrementally
deployable in the sense that it provides loop-free routes even
if only a subset of routers implements our solution.

The main contribution of this paper is a multipath computa-
tion algorithm computing at least two paths towards any des-
tination if the network is 2-edge connected. On the one hand,
it has been demonstrated (see [31] for a formal description of
the problem, or [4] for a measurement based evaluation with a
multihoming perspective) that two forwarding alternatives are
generally sufficient to strongly improve the network usage.
On the other hand, for resiliency purpose, two pre-computed
forwarding next hops per destination are sufficient to protect
the network from single link failures. To achieve those goals
in a hop by hop forwarding context, we present an algorithm
called TBFH which computes the Two Best First Hop disjoint
paths. To the best of our knowledge, our proposition is the
lowest time complexity solution that performs this computa-
tion. The time complexity of our algorithm does not depend
on the degree of the calculating router as it is generally the
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case with existing methods.
In addition, we provide a general multipath forwarding

scheme whose goal is to combine load balancing and fast re-
routing capabilities. Finally, we also investigate and discuss
several deployment issues. In particular, we focus on the
multipath interaction with TCP and we also propose different
levels of tradeoff between complexity and path diversity.

The remainder of the paper is organized as follows: Sec. II
presents the general context of multipath hop by hop forward-
ing while Sec. III provides technical details of our proposition.
Then, Sec. IV deals with deployment considerations. Finally,
Sec. V gives an overview of the related work and Sec. VI
shows the efficiency of our approach using a large variety of
networks.

II. H OP BY HOP MULTIPATH FORWARDING

In this section we describe the context related to hop by
hop multipath forwarding schemes. In this context, computed
paths are elementary and first hop distinct. Table I lists the
graph definitions used in the paper. For the sake of clarity and
without loss of generality, we do not consider the multigraph
issue: a first hop is equivalent to a successor node, the next
hop.

The functionw assigns the weight of each edge which is
flooded by the routing protocol. Paths are sorted according to
an additive metricC, and we focus on shortest paths having
distinct first hops. With a hop by hop forwarding perspective,
only the next hop, e.g., the first hop of a computed path, is used
in the forwarding plane: the distributed composition of these
next hops forms forwarding paths, the routes. To distinguish
equal cost paths, we consider the lexicographical order of their
first hops.

Conceptually, with a hop by hop link state routing protocol
using multiple unequal cost paths, two phases are necessary
to ensure loop-free forwarding: a multipath computation al-
gorithm and a validation process. The first phase computes
a set of alternate paths using distinct first hops towards each
destination. This phase is detailed in Sec. III while Sec. II-C
provides a brief description of existing work. The second phase
selects among such alternate paths those ensuring a loop-free
forwarding scheme. More precisely, this phase ensures that
any hop by hop composition of the validated next hops does
not create forwarding loops. Sections II-A and II-B provide
examples of such validation processes for fast re-routing and
load balancing purposes.

In order to describe these phases more deeply, let us define
two kinds of paths. Aprimary path denotes the optimal path
linking a given pair of nodesps, dq. The path optimality
depends on the costC according to the link weightsw and
a lexicographic order to rank equal cost paths. The cost of
a path is given by the metric used byC (which is usually
additive and such thatw takes link capacities into account). For
a given pairps, dq, analternatepath is a path whose first hop is
distinct from the first hop of the primary pathP1ps, dq. In the
context of hop by hop forwarding, a route to a destinationd is
defined by its first hop: the next hop used to reachd. Although
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Fig. 1. Alternate paths and validations rules

there may exist several forwarding paths using the same first
hop n, in the path computation phase we focus on the best
elementary path usingn as first hop. In the remainder of the
paper, as we consider a distributed forwarding plane, alternate
paths are first hop distinct so that terms primary/alternatepaths
Pj , j ¥ 1 refers to primary/alternate next hopsNHj , j ¥ 1.
In particular, we focus on the next hop which will be used after
the convergence of the routing protocol following the failure
of the primary next hop. We call such a next hop alocal post
convergencenext hop: it is the first hop of the optimal alternate
path.

Definition 1: A nodev is a local post convergence next hop
for a pair rs, ds if v � NH2ps, dq.

Now, let us define a safety property for hop by hop for-
warding protocols guaranteeing the forwarding loop-freeness.

Definition 2: A forwarding scheme is loop-free at the router
level if it always converges to a stable state such that when
any routers forwards a packet towards any destinationd via
any validated next hopv, this packet never comes back tos.

Note that a post convergence next hop does not provide any
guarantee of loop-freeness during transient periods of topology
changes. Let us consider the example of the weighted topology
given in Fig. 1(a). The primary pathP1pa, dq, denoted PR in
Fig. 1(b), has a cost ofC1pa, dq � 1 while the local post
convergence next hopb � NH2pa, dq for this pair pa, dq is
the first hop of the pathP2pa, dq whose cost isC2pa, dq � 4.
If a usesb as an alternate next hop for destinationd, then a
forwarding loop betweena andb may appear ifb also usesa
as an alternative next hop ford. This figure illustrates the need
for loop-free rules to enable multipath routing in IP networks.

A. Fast re-routing

Fast re-routing techniques improve network resiliency. Tech-
niques such as loop-free alternates (LFA, [6]) are generally
able to cover more than half of the network from single link
failure (Sec. VI-C and [18] provides an evaluation of the LFA
coverage in actual IP networks). The purpose of LFA is to
select backup next hops in order to handle local failures with
a very low overhead. When such LFA next hops exist, it allows
to avoid the use of more sophisticated re-routing scheme such
as MPLS-FRR [41] or Notvia [9].

In case of failure, the goal is to quickly converge towards
the new stable routing state and, during this fast convergence
period, select backup next hops that do not induce transient
loops. Five periods determine the convergence time of a link-
state routing protocol ([19]):
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TABLE I
GENERAL NOTATIONS

Notations Definitions

GpN, E, wq oriented graphG with a set of nodesN , a set of edgesE and a positive valuation of edgesw
e � px, yq edgee P E connecting nodex to nodey

succpxq set of successor nodes ofx

degpxq outgoing degree of nodex, degpxq � |succpxq|
Pjps, dq jth best elementary path linkings to d. This is the best path

j ¤ degpsq whose first hop is distinct from the first hop of thej � 1 best paths
Cjps, dq cost of the elementary pathPjps, dq

NHjps, dq jth best next hop computed ons towardsd.This is the first hop ofPjps, dq.
1- The physical layer reaction time (e.g, SDH or SONET

alarms).
2- The link layer reaction time (e.g,Hello or BFD mes-

sages).
3- The advertisement flooding time (e.g, the exchange of

Link State Advertisements messages,LSA).
4- The SPT re-computation time (the update of the Routing

Information Base, RIB).
5- The Forwarding Information Base (FIB) update.

Techniques such as LFA allow to save the three longest
periods, the LSA flooding time and the RIB and FIB updates
(steps 3 to 5). Indeed, with the appropriate FIB architecture
(Sec. III-A), if there exists a local pre-computed alternate next
hop, it is possible to use it during transient periods of topology
change. A LFA next hopv verifies:

C1pv, dq � C1pv, sq   C1ps, dq (1)

This rule means thatv does not uses as its primary next hop
to reachd. The LFA rule guarantees the absence of forwarding
loops as long as there is only one link failure in the network.In
Fig. 1, nodeb can validate nodec as a LFA next hop protecting
from the failure of the primary first hoppb, dq. Indeed, the pathpc, dq has a cost that is strictly lower thanC1pc, bq�C1pb, dq �
3.

B. Load balancing

Load balancing allows for congestion avoidance: several
next hops can be used simultaneously to provide routing
flexibility and increase the total bandwidth of each flow. The
objective is to find a set of next hops whose distributed
composition does not induce forwarding loops. Stronger rules
than with the re-routing issue are necessary: we need to
compute loop-free next hops that can be simultaneously used.

To increase the number of forwarding alternatives compared
to ECMP, the simplest rule to select a next hopv on a router
s (such thatv P succpsq) is the downstream criterion(DC)
which can be expressed as follows:

C1pv, dq   C1ps, dq (2)

This rule is defined in [1], used in OSPF-OMP [43] and
is denotedLFI in [44] (with an additional property avoid-
ing forwarding loops even in transient periods of topology
changes). Gojmerac and al. [20] have shown that the path
diversity achieved by this simple rule is much more important

than the one obtained with ECMP (Sec. VI-C also highlights
this result in actual IP networks). Note that the ECMP and
the DC rules can be used both for load balancing and fast
re-routing purposes.

In Fig. 1, nodea is a DC next hop for the pairpb, dq. Indeed,
the pathpa, dq has a cost strictly lower than the one ofpb, dq.
Note that a DC next hop is also by construction a LFA next
hop, but the reciprocity is not true. The LFA next hopc does
not verify rule (2) for the pairpb, dq.
C. Alternate path computation

The path computation method used in OSPF or IS-IS
is a Shortest Path First algorithm (SPF) such as Dijkstra’s
algorithm. To enable the diversity of forwarding paths, it is
necessary to compute alternate paths. The goal of this phase
is to compute a set of elementary paths whose first hops are
distinct: the candidate next hops.

In order to compute costsC1pv, sq used in rules (1) and (2)
for any neighborv and any destinationd, a router can perform
multiple SPT computations. This computational phase allows
to avoid the exchange of messages between neighbors. The
most trivial technique consists in computing the SPT of each
neighbor of the root node ([6] and [33]). This kind of method is
denoted kSPF in the remainder of the paper. The costC1pv, sq
used in rule (1) can be computed either thanks to a reverse
SPT computation, or using the SPT rooted atv, or considering
the minimum between the shortest elementary path connecting
s andd which usesv as first hop and the costC1ps, dq. The
main drawback of a kSPF algorithm is that it increases the
time complexity of the computation phase by a multiplicative
factor of k � degpsq. For routers having a large degree, this
factor is not negligible and the time complexity overhead can
become significant for large IP networks.

Our proposal focuses on post convergence next hops which
are first hops of optimal alternate paths. On the one hand,
it allows to strongly reduce the time complexity required by
the multipath computation phase. Indeed, the time complexity
of our algorithm is lower than two SPT computations. On the
other hand, focusing on post convergence next hops minimizes
the path flapping in case of failure as described in Sec. IV-B.
However, in some singular cases described in Sec. III-D, there
does not exist post convergence next hops verifying rules (1)
or (2) while there exists valid next hops. In these cases, the
path diversity is not optimal compared to a kSPF algorithm
applied to rules (1) or (2). In Sec. VI-C, we show that post
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convergence next hops are sufficient to perform an interesting
tradeoff between path diversity and computation time. Cases
where there exists a valid alternate next hop while there does
not exist a valid post covergence one are extremely rare.

Furthermore, our approach may allow for considering more
sophisticated forwarding architectures such as the incoming
interface dependent forwarding scheme described in [29].
Indeed, with the scheme developed in [29], it can be useful to
know neighbor alternate costs in order to provide greater path
diversity than with a forwarding scheme solely based on the
destination.

III. O UR PROPOSAL

The goal of our algorithmic approach is to provide the two
best first hop disjoint paths between each pair of routers if
such paths exist (the network must be 2-edge connected). For
that purpose, we propose a multipath computation algorithm
able to compute a set of pairstrCjps, dq, NHjps, dqsu �dPN

containing at least the two best elements for each destination
d. Using such a multipath computation algorithm, rule (2)
becomes:

Cjps, dq � wps, vq   C1ps, dq (3)

If the next hopv � NHjps, dq satisfies rule (3), thenv is a
valid DC next hop: thejth best next hop can be used bys

to reachd because it satisfies Definition 2. For fast re-routing
objective, the LFA rule (1) becomes:

Cjps, dq � wps, vq � C1pv, sq   C1ps, dq (4)

Rule (4) takes the termC1pv, sq into account such that a DC
next hop is also a LFA next hop. However, a LFA next hop
which does not verify rule (3) satisfies Definition 2 only if it
used after the failure of the linkps, NH1ps, dqq (and if there
is no other failure in the network).
To summarize, our approach follows these three steps:

1- it uses a classic link state control plane to get topological
information (LSA flooding),

2- it uses a multipath computation algorithm instead of a
basic SPT to compute primary and candidate alternate
next hops,

3- it uses a specific condition in order to ensure the loop-
free property and thus select valid next hops.

Note that our multipath computation algorithm can be used
with non local loop-free rules. We provide DC and LFA rules
to illustrate two simple applications. Using IP-in-IP tunneling
capabilities [8], it can be demonstrated that the protection
coverage can be complete if IGP link weights are symetric
and if the network is 2-edge connected.

A. Combining re-routing and load balancing

We envision a combined load balancing/fast reroute scheme
using three modes of forwarding instead of a single one
containing only the primary next hops set (denoted PR). In
order to improve the forwarding diversity, we define three sets
of next hops: the MultiPath set (MP), the Fast-ReRouting set
(FRR) and the Fast Convergence set (FC).

The first mode is dedicated to load balancing (PR+MP sets):
for a given destination, all next hops belonging to the MP
set can be used simultaneously with the primary next hop to
enable load dependent routing. The second mode (using the
FRR set) is used for fast reroute when all next hops in the load
balancing mode have failed, e.g., it provides loop-free next
hops able to locally handle a failure outage during transient
period of topology changes. During the outage, note that FRR
next hops can be added to the MP set if they verify the DC
rule usingC2ps, dq as primary cost. The last mode can be
used to improve the fast convergence (FC) in case of failure
(no more valid next hop in the PR/MP and FRR modes), e.g.,
it allows to directly use the new best next hop but does not
provide any guarantees on forwarding loop-freeness. In this
paper, the MP set corresponds to the DC rule, the FRR set to
the LFA rule and the FC set consists in post convergence next
hops that are neither in the DC set nor in the LFA set. Note
that the FC next hops set can be empty if the FRR method
provides a complete coverage for a given destination.

Our scheme can be summarized this way, for a given
destinationd, if a failure occurs:

- locally on the primary next hop towardsd: use alternate
next hops instead, and trigger IGP convergence.

- locally on an alternate next hop towardsd: do not use this
alternate next hop anymore and trigger IGP convergence.

- remotely (a LSA is received): remove DC next hops
whose alternate paths towardsd contains this link and
trigger IGP convergence.

In this scheme, triggering IGP convergence means recomput-
ing primary next hops and then compute and validate alternate
next hops. We assume that the FIB architecture is designed
to contain multiple next hops towards a given destinationd.
The nature of the forwarding function is not in the scope
of this paper. However, an architecture such as PIC (Prefix
Independent Convergence FIB architecture which is already
supported by recent Cisco Systems platforms, [17]) gives some
insights about such a forwarding function considering the IGP/
BGP interaction. Such an architecture allows to activate the
switchover to alternate next hops in a time that does not scale
with the number of impacted destinations.

However, the use of the LFA rule without considering DC
next hops may create transient forwarding loops. In order to
use the load balancing mode during transient periods of topol-
ogy change, PIC needs to be complemented with a forwarding
function ffpd, lq Ñ tNHu able to act as a filter to avoid
remote failing linkl. tNHu denotes the set of remaining valid
next hops towardsd after the failure ofl. In order to combine
DC and LFA next hops without generating transient loops, the
ff function needs to take remote link failures into account
using LSA. If the failing link is included in an alternate path
corresponding to a DC next hop towardsd, this DC next hop
cannot be included intNHu. The removal of alternate paths
containing the failing link allows to avoid transient loopsand
thus combine load balancing and fast rerouting. Note that this
is also possible to simply de-activate the MP set during the
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IGP convergence. Obviously, the tradeoff between the gain
(combining load balancing and fast rerouting) and complexity
(taking remote failures into account) of this improvement must
be analysed. Indeed, the gain of enabling load balancing during
the IGP convergence depends on traffic demands. Note that the
functionalities and associated gains suggested in this paper do
not rely on such a FIB feature.

FRR next hops are used to provide emergency exits during
periods of convergence whereas MP next hops are designed to
perform load balancing. A possible application of our scheme
is to implicitly expose multiple forwarding paths to end hosts.
Thus, at layer-4, end hosts can take advantage of the resulting
distributed path diversity thanks to a path selector mechanism.
This mechanism and related issues with TCP are detailed in
Sec. IV-B.

B. Alternate Path Properties

In the context of hop by hop forwarding, an alternate path
denotes a path whose first hop is distinct from the one of the
primary path. More precisely, we are interested in a subset
of alternate paths verifying the post convergence property:
the optimal 1-alternate paths. Table II summarizes definitions
related to our path terminology. Fig. 2 serves as a basis to
understand properties of 1-alternate paths.
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Fig. 2. Branches, transverseand internal edges

Given a root nodes, the set of edges1 of a graph can be
partitioned into four subsets:

- Edges connectings to first hops of primary paths.
- Edges belonging to subtrees of the SPT forming

branches.
- Transverse edgesconnecting two distinct branches or

connecting the roots and a branch without being the
first hop of a primary path.

- Internal edgeslinking nodes of the same branch without
belonging to this branch.

1We consider both directions of each edge.

The union of these four subsets capturesE. A direct conse-
quence of this decomposition is the fact that an alternate path
contains at least one transverse edge. Fig.2 illustrates this edge
partition in a simple graph. Note that we consider that the
weights of each link is fixed to1 such that the metric that
we use is the path length in hop number. The SPT rooted at
s includes three branches illustrated by three different colors
(black, grey and white nodes). In this topology, there are two
transverseedges (dashed arcs) and twointernal edges (dotted
arcs). The plain edges form the SPT. The edgesi1 and i2 are
called internal because they connect nodes belonging to the
same branch, whereas edgest1 and t2 are transverse edges
because they connect nodes belonging to different branches.
A path must contain nodes of at least two different branches
to be an alternate path except if the first hopn of the alternate
path corresponds to a transverse edge. In this case, this means
that the shortest path towards neighborn is not the direct link
so that this direct link corresponds to a transverse edge. In
any case, this implies that an alternate path contains at least
one transverse edge. In the hop by hop forwarding context, an
alternate path is necessarily a k-alternate path for somek ¥ 1.

Fig. 2 illustrates the k-alternate paths terminology. Edgesps, hq, ps, iq and ps, nq are the three first hops (thick arcs)
linking s to the three branches. Pathps, h, nq is a simple
alternate path and ps, i, j, e, cq is a 1-alternate path. Pathps, n, h, e, jq is 2-alternate, it contains two transverse edges
t1 and t2.

In practice, it means that routers uses three primary next
hops for its forwarding plane:NH1psq � th, i, nu. If the
destination belongs to:

- ta, b, c, d, e, hu, s usesh as primary next hop.
- ti, j, k, l, f, gu, s usesi as primary next hop.
- tm, n, ou, s usesn as primary next hop.

Furthermore, having a post convergence next hoph �
NH2ps, nq (the first hop of a simple alternate path) verifying
rule (4) means thats can useh as a LFA next hop towards
destinationn. By generalizing to all nodes inbranchnpsq,
s can useh as a LFA next hop for any destination intm, n, ou. Indeed, there exists a 1-alternate path verifying rule
(4) towards each of these destinations.

C. Optimality of 1-alternate paths

In this section, we describe the properties of alternate paths
that contain only one transverse edge: 1-alternate paths. Let �
be the operator representing path concatenation andǫ be the
notation for an empty path.

Several alternate paths using the same first hop towards
a given destination may exist. Considering destinationd, we
focus on the best path among the set of 1-alternate paths using
the same first hop towardsd. To refer to those paths we use
the termoptimal 1-alternate path. An optimal 1-alternate path
Pps, dq can be decomposed as follows:

Pps, dq � p1 � px, yq � p2

with p1 P tP1ps, xq, ǫu, edgepx, yq P transpG, sq, andp2 not
containing any transverse edge. Note that the simple alternate
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TABLE II
MULTIPATH TERMINOLOGY

Terms Definitions

NH1psq set of primary first hopsh P succpsq such thatDd P N | h � NH1ps, dq
branchhpsq subtree of the SPT ofs rooted at a neighborh P NH1psq

transverse edge an edge is transverse if it connects two distinct branchesbranchhpsq and
branchh1psq or if it connects the roots and a noden � h in a branchhpsq

transpG, sq set of all transverse edges considering a root nodes and a graphGpN, E, wq
internal edge an edgee � px, yq is internal if it connects two nodesx andy

belonging to a givenbranchhpsq and such thate R branchhpsq
k-alternate path a path is k-alternate if it contains exactlyk transverse edges

simple alternate path a 1-alternate pathps, ..., nm, dq such thatps, ..., nmq � P1ps, nmqP Ptps, dq and pnm, dq is a transverse edge

pathp1 � px, yq is by definition entirely edge-disjoint from the
primary pathP1ps, dq. The optimal 1-alternate path between
s andd verifiesp2 � P1py, dq, wherep2 may contain one or
several internal edges. We have the following property:

Property 1: If there exists an alternate pathP 1 from s to d,
then there exists a path froms to d whose cost is not greater
than the one ofP 1 and containing only one transverse edge.

Proof: Let P � ps, ..., ni, ni�1, ..., dq be an alternate
path froms to d wherepni, ni�1q is the last transverse edge
of P . Let P1ps, niq be the primary path froms to ni. Then,
eitherP1ps, niq � ǫ because the edgeps, ni�1q is transverse,
or P1ps, niq is not longer thanps, ..., niq P P . In both cases,
there exists an alternate pathP 1 � P1ps, niq � pni, ni�1q �pni�1, ..., dq containing only one transverse edge and such that
its cost is not greater than the one ofP .

Figure 2 illustrates Property 1. The pathP � ps, n, h, e, jq
betweens and j goes throughbranchnpsq and branchhpsq
to reach the transverse edget2. This path contains two
transverse edges whereas there exists a simple alternate path
P 1 � P1ps, eq � pe, jq.

A direct consequence of Property 1 is that if there exists an
alternate pathP from s to d, then at least one of the optimal
alternate paths towardsd is a 1-alternate path. For a given
destination, it is not possible for ak-alternate path (k ¡ 1)
to have a strictly lower cost than an optimal 1-alternate path.
Indeed, by definition, the best simple alternate path reaching a
given branch at the same node has necessarily a cost lower or
equal to any other alternate path reaching this branch (Property
1). This consequence motivates the design of our algorithm:
the goal is to take advantage of Property 1 by focusing on the
search for optimal 1-alternate paths.

D. The TBFH Algorithm

TBFH stands for theTwo Best First Hopsalgorithm. TBFH
computes the primary next hop and a set of candidate next
hops towards each destination. A candidate next hop is the
first hop of a computed alternate path. Each candidate next
hop is associated to the cost of its alternate path for further
validation ensuring loop-free forwarding.

TBFH requires only one additional reduced SPF com-
putation while it computes all local post convergence next
hops. Our algorithm uses two distinct phases of computation:
TBFH-1 (Alg. 1) and TBFH-2 (Alg.2). TBFH-1 performs the

computation of the set of primary next hops and partitions
the graph into several non connected components. These
connected components are given as an input for TBFH-2
which performs a SPF algorithm on each of them and then
returns a set of candidate couples (alternate next hop, alternate
cost). The separation between those two phases is useful
to uncouple the primary next hops computation from the
computation of candidate alternate next hops. Hence, it is
possible to forward packets on primary next hops while the
computation and validation of alternate next hops is performed
as an independent task. Without loss of generality, sets used in
Alg. 1 and Alg. 2 (e.g,Tc or Tp) can be implemented through
various kinds of priority queue (see Sec. III-E): lists, heaps or
other optimized structures. In any cases, those structuresuse
the destination node as a key to access their elements such
that Tcpyq � cost means that the best current cost towards
the destinationy is cost.

TBFH-1 decomposes the graphG into |NH1psq| subgraphs:
Gh

s , �h P NH1psq. Each subgraphGh
s pNh

s , Eh
s , wh

s q, h P
NH1psq has its own set of nodes and edges. The only inter-
section between those sets is the root nodes. A subgraphGh

s

is the union of the calculating nodes, the branchbranchhpsq
rooted ath P NH1psq, the internal edges connecting nodes
belonging tobranchhpsq and a set ofvirtual links where this
set represents the subset of optimal simple alternate pathsP Ptps, xq, �x P branchhpsq. A virtual link ps, xq has a
specific weight functionwh

s pps, xqq. This weight is equal to
the cost of the optimal simple alternate path linkings andx.
Note that none of these paths useh as first hop. Virtual links
are used instead of transverse edges such that there are as many
edges inE as the number of edges resulting of the union of
Eh

s , h P NH1psq. All other links (internal and those belonging
to the SPT) have the same weight as the ones given byw. In
practice, TBFH-1 partitions nodes in subsetsNh (line 37) and
computes simple alternate paths towards each groups (lines
20, 30, 32 and 39). A virtual link inV h is a triplet pa, b, cq
wherea is the destination node, andb and c are respectively
the cost and the first hop of the optimal simple alternate path
towardsa (c � h). SetsH andW are used to store the optimal
alternate costs and corresponding next hops until each given
destination node is definitely assigned to a branch (line 37).
A virtual link is definitively added (lines 30 and 39) when the
destination node is marked (line 36), otherwise TBFH stores
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Algorithm 1 Algorithm TBFH step 1

1: procedure TBFH-1(GpN, E, wq, s)
2: Tc, Tp: Set of best cost and next hops
3: T : Set of marked nodes
4: H , W : Set of virtual hops and weights
5: tNhu: Set of the set of nodes in eachbranchhpsq
6: tV hu: Set of the set of virtual links for eachbranchhpsq
7: Tcpdq � 8, �d P N
8: tNhu � H, tV hu � H
9: Hpdq � 8, W pdq � 8, �d P N

10: T �H, T p �H
11: Tcpsq � 0

12: while |T |   |N | do
13: Choose the nodex (x R T ) of minimum costTcpxq
14: h � Tppxq
15: for all y P succpxq do
16: cost � Tcpxq � wpx, yq
17: if cost   Tcpyq then
18: tp � Tppyq
19: if tp � h^ tp � H then
20: Hpyq � tp, W pyq � Tcpyq
21: end if
22: Tcpyq � cost
23: if x � s then
24: Tppyq � y
25: else
26: Tppyq � Tppxq
27: end if
28: else if h � Tppyq ^ cost   W pyq then
29: if y P T then
30: Add virtual link py, cost, hq in V h

31: else
32: Hpyq � h, W pyq � cost
33: end if
34: end if
35: end for
36: Put x in T
37: Put x in Nh

38: if W pxq   8 then
39: Add the virtual link px,W pxq,Hpxqq in V h

40: end if
41: end while
42: ReturntNhu andtV hu for TBFH-2
43: ReturnTp as the set of primary next hops
44: end procedure

temporary values in setsH and W (lines 20 and 32). Line
13 performs the search for the minimum cost while line 22
performs the best cost update or insertion.

During a second phase, TBFH-2 performs a SPF algorithm
on each subgraphGh

s returned by TBFH-1.Considering Prop-
erty 1, TBFH-2 is able to compute paths using internal edges
and so guarantees the computation of optimal 1-alternate paths.

The setA returned by TBFH-2 contains as many couples
of alternatives as the number of destinations if the network
is 2-edge connected. This set of candidate next hops serves
as a basis to locally verify the validity of each alternate
path. Lines 8-11 performs the virtual links updates while lines
12-21 performs the remainder of the SPF algorithm in each
reduced subgraph. The boundaries of each subgraphGh

s are
here implicitly marked thanks to the conditiony P Nh in line

Algorithm 2 Algorithm TBFH step 2

1: procedure TBFH-2(GpN, E, wq, tNhu, tV hu, s)
2: A: Set of couples (alternate next hop, alternate cost)
3: for all Nh P tNhu do
4: Tc, Tp: Set of best costs and next hops
5: T : Set of marked nodes
6: Tcpdq � 8, �d P Nh

7: T �H, T p �H
8: for each tripletpa, b, cq P V h do
9: Tcpaq � b, T ppaq � c, Apaq � pb, cq

10: end for
11: Put s in T
12: while |T |   |Nh| do
13: Choose the nodex of minimum costTcpxq
14: for all y P succpxq do
15: if y P Nh ^ Tcpxq � wpx, yq   Tcpyq then
16: Tcpyq � Tcpxq � wpx, yq, T ppyq � Tppxq
17: Apyq � pTppyq, T cpyqq
18: end if
19: end for
20: Put x in T
21: end while
22: end for
23: ReturnA as the set of candidate next hops
24: end procedure

15.
Fig.3 illustrates the basics of the TBFH computation. Note

that we use the same caption as in Fig. 2. Moreover, for
the sake of clarity, we do not have represented all potential
internal links and links belonging to branches in this example.
In Fig.3(a), TBFH-1 is illustrated on a simple graph with three
branches attached to roots: nodes are gathered depending
on their respective primary first hop (a, b and c nodes) to
form branches. TBFH-1 takes advantage of simple alternate
paths by adding them asvirtual links on each subgraph. Each
virtual link is included as a directed edge in its associated
subgraphGh

s pNh
s , Eh

s , wh
s q, h P a, b, c. For example, the

optimal simple alternate pathP1ps, uq � pu, zq, which uses the
transverse edgepu, zq linking branchbpsq andbranchapsq, is
added as a virtual link inGa

spNa
s , Ea

s , wa
s q with a weight of

C1ps, uq � wpu, zq becausez belongs tobranchapsq.
In Fig.3(b), we have illustrated TBFH-2 onbranchapsq. The

two virtual links allowing to reachbranchapsq are depicted
as dashed arcs. The subgraphGa

s pNa
s , Ea

s , wa
s q contains all

virtual links connectings and nodes inbranchapsq having
an incoming transverse edge (y and z on the example). The
first hop ps, aq, between the root nodes and branchapsq
is not added to the subgraphGa

s in order to only focus on
alternate paths computation. Therefore, the SPF computation
on Ga

s allows s to compute the shortest path towards each
destinationd P Na

s in this subgraph. A shortest path in a
subgraphGh

s pNh
s , Eh

s , wh
s q corresponds to the shortest path in

Gzps, hq. In other terms, the optimal 1-alternate path inG

such that the costC2ps, dq, �s, d P N computed in a graphG
is equal to the costC1ps, dq in the graphGzps, NH1ps, dqq.

Thus, we have the following property.
Property 2: TBFH allows any nodes P N to compute its
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set of optimal 1-alternate path towards any destinationd P N .
Proof: Let us consider that there exists a 1-alternate path

P whose cost is lower than the one computed by TBFHP 1:ñ CpP 1q ¥ CpPq. Considering a given pairps, dq, let us
denote such a pathPps, dq� p1�px, yq�p2 whered belongs to
a givenbranchhpsq, h P NH1psq. SincePps, dq is an optimal
1-alternate path as defined in section III-C,p1 is a primary
path,px, yq is a transverse edge andp2 a path not containing
any transverse edge. Ifp2 � ǫ (d � y) thenPps, dq is a simple
alternate path.

First, let us consider that the optimal simple alternate path
p1�pb, cq is not computed with TBFH. We know that when the
minimum key node extraction returns a given node, then all
its outgoing links are explored in the following iteration step.
Therefore, TBFH explores all the composition of a primary
path with a one hop path containing a transverse edge. By
definition, this composition forms a simple alternate path,and
thus TBFH computes all optimal simple alternate paths.

Then, the only subpath ofP ps, dq that can differ from the
1-alternate path computed with TBFH isp2. Node y is the
first hop of the pathp2. Thanks to the property of optimality
of sub-paths, we know that, if the best alternate path towards
d goes throughy, TBFH-2 is able to compute the optimal cost
betweeny andd not containing any edge intranspG, sq. If we
apply the Dijkstra algorithm to the graphGpN, E1, wq | E1 �
EzttranspG, sq, ps, hqu�tPt1ps, dqu, �h P NH1psq, �d P
N wherePt1ps, dq denotes the set of virtual links representing
simple alternate pathsP Ptps, dq, it is equivalent to applying it
on each subgraphGs

h, �h P NH1psq. Indeed, the removal of
s partitionsGpN, E1, wq into |NH1psq| connected subgraphs.
If y is not included in one of the alternate paths towardsd

computed by TBFH, then it means thatP 1ps, dq has a cost
strictly lower than the one ofP : ñ CpP 1q   CpPq. Thus,
we have the following results:CpP 1q ¥ CpPq andCpP 1q  
CpPq, which is impossible.

Thus, considering Property 1, TBFH allows any nodes P N

to compute its set of local post convergence next hops for
all destinationd P N . TBFH-1 computes all optimal simple
alternate paths. TBFH-2 computes optimal paths on each
subgraphGh

s , h P NH1psq. When TBFH-2 applies a SPF
algorithm on a subgraphGh

s , it uses virtual links representing
optimal simple alternate paths rather than using the first hopps, hq. Since these paths are optimal alternates not using the
first hop ps, hq, we can deduce that there cannot exist an
alternate path whose cost is strictly lower than those that
TBFH-2 computes. However, note that there may exist a valid
loop-free next hop which is not a local post convergence one.

Fig.3 also helps to understand the cases where an optimal
1-alternate candidate is not valid according to a given loop-
free rule whereas there exists a validk-alternate path (k ¡ 1).
Let us consider the DC rule, and assume there exists no valid
1-alternate path linkings and d. In particular, let us assume
thatc � NH2ps, dq is not a valid next hop becauseC2ps, dq�
wps, cq ¥ C1ps, dq. Let us assume that the third ranked next
hop, NH3ps, dq � b, is the first hop of a2-alternate path
P3ps, dq � ps, bq�P1pb, vq�pv, wq�P1pw, xq�px, yq�P1py, dq

s

a

dz y

b

u

v

c

w

x
b� c

c� aa� b

(a) TBFH-1

s

a

d

z y

(b) TBFH-2 onbranchapsq
Fig. 3. TBFH algorithm illustration

because the weight ofpu, zq is large. If b is a valid next hop
such thatC3ps, dq � wps, bq   C1ps, dq whereasc is not a
valid next hop, we know that:

C1pb, vq � wpv, wq � C1pw, xq   C1pc, xq (5)

This inequality illustrates the kind of cases which are problem-
atic: TBFH does not always compute a valid alternate next hop
while there exists one. However, in practice, problematic cases
do not occur frequently as shown in Sec. VI-C. On the one
hand, if c � x or if c � w, a k-alternate path cannot be valid
if there does not exist a valid 1-alternate path. More generally,
the shorter the distance betweenc andx or c andw is, the more
this case becomes rare. On the other hand, we also know that
wps, cq�C1pc, xq ¤ wps, bq�C1pb, vq�wpv, wq�C1pw, xq,
so it means thatwps, bq ¡ wps, cq. Therefore, this singular
case may occur when the distribution of local link weights is
very heterogeneous. Note that if the IGP weights of all links
attached to a given router are the same, then TBFH computes
the complete DC coverage for this router. If the link valuation
is globally uniform, then TBFH computes the complete set of
valid DC and LFA next hops towards any destination.

In practice, there can exist much more than one transverse
edge linking the same pair of branches. If there exists several
transverse edges betweenbranchbpsq andbranchcpsq, the left
part of the inequality becomes the minimum value between all
possible 1-alternate path combinations linkingbranchbpsq and
branchcpsq.

Fig. 4 gives a basic example of the TBFH computation
on a valued topology. Weights are given in Fig. 4(a) and
we assume that they are the same in both directions of each
link. Fig. 4(b) provides the partition of edges according toour
terminology withs as root node. We can notice that there are
three subgraphs rooted at nodesd, a and c. Using TBFH,s
is able to compute all DC next hops except one: for the pairps, dq, there exists a 2-alternate pathps, c, b, dq which is not
computed by TBFH whereas the cost of the pathpc, b, dq is
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Fig. 4. TBFH advantages and drawbacks

strictly lower than the primary one betweens andd (4�4   9).
This drawback is due to the fact that TBFH computes only the
post convergence pathps, a, dq whose cost is lower than the
one of ps, c, b, dq (5 � 10   9 � 4 � 4). This case illustrates
the inequality (5) where:wpc, bq   C1pa, bq � wpa, bq. Note
that other terms do not appear because this example does not
involve several path segments but only the transverse edgepc, bq.
E. Complexities

In this section, we analyze the time and the space complex-
ity of the TBFH algorithm. A SPF algorithm such as TBFH
or Dijkstra’s algorithm uses a structure called a priority queue
(PQ) to perform its computation2. This structure is used to
store and evaluate the costs of the explored paths and supports
three methods:extract min, decreasekeyand insert key. The
first operation allows for finding the current minimal cost
path in the PQ, while the two other operations respectively
modifies and creates a new path cost entry in the PQ. The
time complexity of a SPF algorithm depends on the kind of PQ
used. Let us denotem the cost of the operationextract min,
d the cost of the operationdecreasekey, and i the cost of
the operationinsert key. The operationextract min denotes
both the search of the minimum key and its suppression. The
complexity of a SPF algorithm (e.g, the Dijkstra SPF) is then:

Oppm � iq � |N | � d� |E|q
With an array list as PQ,m � Op|N |q, i � d � Op1q
whereas a binary heap reduces the cost ofm to Oplog2p|N |qq
while the cost ofi and d are increased toOplog2p|N |qq.
The optimal structure for a SPF PQ is the Fibonacci heap
[12]. The amortized cost ofm is then inOplog2p|N |qq while
d � i � Op1q on average. With a Fibonacci heap PQ, the
amortized time complexity of TBFH, is lower than:

2�Op|N |log2|N | � |E|q
Proof of the TBFH time complexity: Let us denotet|N1|, |E1|u, ..., t|Nk|, |Ek|u the size of each branch rooted

at a given roots in terms of node and edge number (k ¤
degpsq). Then the complexity of TBFH isSPF p|N |, |E|q �
SPF p|N1|, |E1|q � ... � SPF p|Nk|, |Ek|q whereSPF pa, bq
denotes the complexity of a SPF algorithm on a graph contain-
ing a nodes andb edges. Indeed, the termSPF p|N |, |E|q is

2Note that the PQ is denotedTc in Alg. 1

the time complexity of TBFH-1 whereasSPF p|N1|, |E1|q �
... � SPF p|Nk|, |Ek|q is the time complexity of TBFH-2.
We know thatSPF p|N1|, |E1|q � ... � SPF p|Nk|, |Ek|q ¤
SPF p|N |, |E|q. Indeed, we haveSPF p|N |, |E|q � Oppm �
iq�|N |�d�|E|q and we know that|N1|� ...�|Nk| � N�1

and |E1| � ... � |Ek| ¤ |E| � k. Yet, even with a Fibonnaci
heap to model the PQ, the functionSPF pa, bq is supra-linear
with a logarithmic factor:SPF pa, bq � alogpaq � b.

In a favorable case, if the branches are well balanced such
that �h P NH1psq, |Nh

s | � |N ||NH1psq| , then the overall run
time complexity of TBFH is in:|N |log2p |N |2|NH1psq|q � 2� |E|
Note that the time complexity of TBFH is minimal when
there is a large number of branches well balanced in terms
of number of nodes. Indeed, the additionnal time complexity
induced by TBFH-2 is dominated by the term:p log2ppq where
p � maxp|N i

s|q, �i P NH1psq, is the number of nodes in the
largest branch.

If degpsq � 2, TBFH provides an optimal coverage (the
same as kSPF) with a time complexity lower than two SPF
computations. Whendegpsq ¥ 2 and if IGP weights are
not equals, TBFH does not guarantee the computation of the
complete set of loop-free alternate next hops. However, TBFH
guarantees the post convergence property and a controlled time
complexity overhead while it provides an almost complete
coverage as shown in Sec. IV-B and VI-C. Note that for
the LFA validation, it is necessary to compute an additional
reverse SPT rooted at the calculating node (Sec. II-B).

The additional space complexity required by TBFH only
depends on the number of 1-alternate paths computed per
destination. With the basic version of TBFH, this additional
space complexity is then only2� |N | (compared to a single
SPT computation), because at most, TBFH only needs to store
two candidate next hops per destination at any time during the
computation.

IV. D EPLOYMENT DISCUSSIONS

In this section, we consider practical issues related to the
deployment of TBFH. First of all, note that our proposal
is incrementaly deployable such that routers implementing
TBFH can coexist with non multipath routers or ECMP
routers. Indeed, using TBFH, the DC and LFA rules can be
verified locally without exchanging any messages. The global
loop-freeness property is still guaranteed.

We are interested by two practical issues: how to improve
the coverage provided by TBFH without strongly increasing
its time complexity ? How to deal with TCP ?

A. Coverage and Complexity Tradeoff

It is possible to increase the coverage of TBFH by adding
a time and space complexity ofdegpsq � |N |. Instead of a
time complexity ofdegpsq � SPF using kSPF, we propose
a TBFH improvement (TBFH’) requiring a time complexity
of 2 SPF � degpsq � |N |. For that purpose, it is necessary
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to use a matrix containing a best cost per destination per
next hop. Indeed, there may exist several simple alternate
paths towards a given destination. In the same way that it
is necessary to tune the basic SPF algorithm to compute
all equal cost multiple paths, TBFH can perform multiple
inheritances. Towards a given destination, TBFH-1 needs to
take all optimal simple alternate paths using different first hops
into account3 before proceeding to the second phase. TBFH-2
can use those multiple paths and costs to increase the number
of valid 1-alternate paths. Note that using an additional time
complexity ofdegpsq�|E|, we can still increase the coverage
by considering a subset of k-alternate paths (k ¥ 1) such
as described in [30]. This improvment is denoted TBFH” in
Sec. VI. In particular, TBFH” allows to compute all k-alternate
paths having a cost equal to the one of the primary path (in
the same way that it is necessary to improve SPF algorithms
in order to compute ECMP next hops).

In order to compute a complete set of valid alternate next
hops towards any destination with any link valuation, it is
possible to use a variant of TBFH: Two Valid First Hops
(TVFH). According to the objective, TVFH needs to take a
modified link valuation into account. Let us denotew1 the new
valuation function. If the goal is to find loop-free next hops
for load balancing purposes using the DC rule, the function
w1 must return the same weight for all outgoing links. Using
a valuation functionw1 such that:

w1px, yq � " λ if x � s pλ P Rq
wpx, yq otherwise.

TVFH computes a complete set of DC next hops with only
one additional SPF computation compared to TBFH.

The functionw1 can also be tuned to compute LFA next
hops. Ifw1 verifies:

w1px, yq � " λ� C1py, xq if x � s pλ P Rq
wpx, yq otherwise.

Therefore, TVFH computes an optimal LFA coverage although
the time complexity does not depend on the degree ofs. In this
case, we need to perform two additional SPF computations
compared to TBFH because we also need to compute the
reverse costsC1py, xq, �y P succpxq.

Note that with TVFH, the optimality of the computed valid
alternate paths is not guaranteed. There may exist a shorter
valid alternate path because weights of each outgoing link of
the calculating node have been modified. For instance, with the
DC rule, thew1 valuation function considers the best alternate
path from the neighboring node, not from the root node. To
perform a good tradeoff between alternate path optimality and
coverage, we may consider the union of the ouput of TBFH
and TVFH. For a given pairps, dq, if there exists a valid
local post convergence next hop,s computes it using TBFH,
otherwise, if there exists a valid next hop towardsd, s can
compute it using TVFH.

Another possible extension of our proposal is to use TBFH
to compute and validate remote exit points for fast reroute

3Not only the best alternate first hop as it is the case with Alg.1

purposes [8]. This technique also refers to tunnels and directed
tunnels described in [18]. A remote exit pointx P N

associated to a given neighborv � NHjps, dq verifies:

Cjps, dq � C1ps, xq � C1px, sq   C1ps, dq (6)

Note that we havev � NHjps, dq � NH1ps, xq: the best next
hop used towardsx is the same than the one used for verifying
this rule. Indeed, in addition to the fact that the elementary
path Pjps, dq must go throughx and be the optimal one via
the edgeps, vq, we want that the deflected encapsulated trafic
betweens andx uses the shortest path betweens andx. Rule
(6) is a rewriting of rule (4) for remote exit point nodes. Using
TBFH, it is possible to consider the penultimate next hop of
optimal simple alternate paths as candidate exit points.

To achieve a complete coverage, we need an additional step
if there is no candidate exit points verifying rule (6). Indeed, if
IGP weights are symetric and the network is 2-edge connected,
TBFH is then able to provide a full coverage for any single
link failure thanks to an IP-in-IP tunneling mechanism. If a
router s detects a link failure impacting a set of destinationtdu which are not covered, it has to (pre)compute a directed
tunnel to allow packets destinated to the settdu to circumvent
the failure by encapsulating them towardsx.

If we consider the set of optimal 1-alternate paths as directed
IP-in-IP tunnels, we can easily prove by construction that the
rerouted packets will never loop. Let us consider the triplet
(s, d, NH1ps, dq), and the optimal 1-alternate pathP1ps, xq �px, yq �P1px, dq wherepx, yq is the unique transverse edge of
the path. To avoid the failed linkl � ps, NH1ps, dqq impacting
this triplet without creating a forwarding loop, a routers can
follow this simple guideline: whenl fails, rerouted packets
destinated tod are encapsulated towards the penultimate hop
of the optimal simple alternate pathP1ps, xq � px, yq and then
pushed4 to the final hop (the head of the transverse edge:
y). Thus, rerouted packets are forwarded through the shortest
path betweens andx, P1ps, xq, pushed through the transverse
edgepx, yq and finally forwarded through the primary path
P1px, dq. The loop-free property is guaranteed ifC1py, dq  
C1py, sq � C1ps, dq. This inequality is ensured by the design
of simple alternate paths and the symetry of IGP weights
becauseC1py, dq ¤ C1py, NH1ps, dqq � C1pNH1ps, dq, dq  
C1py, sq � C1ps, dq.

Let us consider the topology given in Fig. 3(a), and the
triplet (s, d, a � NH1ps, dq). If there do not exist any LFA
next hop covering the linkps, aq for the traffic towardsd,
s can encapsulate the traffic destinated tod towardsx and
forcesx to push the deflected traffic through its direct linkpx, yq. Note that if the optimal 1-alternate path goes through
branchcpsq and C2ps, dq � C1ps, xq � C1px, sq   C1ps, dq,
then the tunnel towardsx is sufficient: x does not need to
push the traffic throughy, it will anyway usey as its first
hop towardsd. To avoid the per destination basis of such
an approach, we can also consider the set of destinations

4The term pushed refers to a secondary encapsulation ifx does not usey
to forward its traffic towardsd
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belonging tobranchapsq, and use the shortest simple alternate
path towards this branch as the directed tunnel to protect the
link ps, aq without considering the optimality of emergency
routes at the granularity of the destination.

B. Multipath Routing and TCP

One of the main issues of a multipath routing architecture
is its interaction with TCP. This interaction can lead to the
head of line blocking problem ([22]). In practice, if the
characteristics of the multiple paths connecting a given pair of
hosts are heterogeneous (in terms of latency, bandwidth, ...),
packets following those paths can reach the destination in an
order differing from the sending sequence. With TCP, out-of-
sequence segments have to be immediatly acknowledged, and
the sender receiving multiple duplicated acks triggers conges-
tion mechanisms resulting in the reduction of the congestion
window. To avoid this issue, packets belonging to a given flow
must be forwarded through the same path. We call such a rule
the path consistency rule. The use of a path selector field in
the IP header is a convenient solution. Each packet of a given
flow is tagged, and this tag is used by routers to ensure the path
consistency rule.Thus, the multiplexing of paths is statistically
ensured by the huge number of flows in the network. Note that
it is possible to use a different path selector between each TCP
burst (packets in the same sender windows). In practice [21], a
mechanism such as ECMP applies a CRC-32 hash function on
some fields of the IP header to emulate the use of a dedicated
path selector.

To improve ressource pooling and thus increase the through-
put of a given application, multipath transport protocols can
use several spaces of packets sequencing at two levels (at
the sub-flow and at the meta connection levels) to define
several sub-flows for a given pair sender/receiver (e.g, [22]
or [39]). Each sub-flow is then associated with a given tag
corresponding to a given path. However, the problem remains
the same at another level: the meta-buffer of the receiver must
deal with the head of line blocking issue. Here the term meta
buffer refers to the buffer used to gather the data of each
different sub-flows before passing it to the application layer.
Thus, either the set of paths has to be homogeneous enough
in terms of capacity/latency/loss, or the meta-buffer has to
be large enough to limit this issue. This is an open issue
mentioned in [24]. However, the path selector only solves the
preservation of each sub-flow consistency.

Failures introduce another level of complexity. Indeed, when
a router detects a failure, the routing protocol must converge
to a new stable forwarding situation, e.g., a new associationrdestination, primary next hops. Then, a given flow whose for-
warding path went through the failed component is deflected to
a new path even with the use of a path selector. The side effects
of such an issue are partially described in [21] with the ECMP
protocol and are not negligible. With fast re-routing techniques
such as LFA, some flows can be deflected twice. Considering
one of these flows5, if the LFA next hop is not a local post

5Such a flow continues to use a route including the node with thefailing
link

convergence one, the flow is first deflected via the LFA next
hop and then, once the routing protocol has converged, to
the post convergence next hop. We argue that the side effect
of using non post convergence LFA next hops can introduce
more inconveniences than advantages. Indeed, the TCP head
of line blocking issue is exacerbated by multiple path changes
(flapping), reducing the advantages of fast re-routing schemes
6.

We envision a scheme minimizing the flapping of a given
flow and allowing a good tradeoff between path exploration
by the end hosts and forwarding simplicity in the network
core. However, note that our path computation algorithms also
allow to perform a router based load balancing inside the
network core. We are interested in the following architecture:
the network proposes several routes while the end hosts use a
tag to select their forwarding path. In practice, flows are tagged
with a path selector, and routers apply a given function on the
path selector to assign the flow to a given next hop. Note that
the forwarding function should use the tag differently on each
router (e.g., uses different subset of bits as the key).

There are several examples of tagging methods (e.g, [46]
and [32]) allowing to explore the path diversity provided by
the network. The main idea behind this kind of schemes can
be summarized this way: for the sake of clarity and without
loss of generality, let us assume that each router has two valid
next hops towards every destination and that the path selector
is encoded onN bits. If each router uses one bit of the tag
to select the forwarding next hop, it allows an end host to
explore 2N routes if all routes have at leastN hops. For
that purpose, each router needs to know the bit (or the subset
of bits to generalize) that it must read to perform its next
hop selection. There are several ways to enable this kind of
technique: use another dedicated field, shift the last bit used,
etc.; but generally this kind of solution implies an IP header
modification at each hop (where there exists several next hops
to a given destination). To avoid this issue, it is possible to
use a local identifier (or a modulo operation of an IP header
field such as the TTL which changes at each hop) to select
another combination of bits belonging to the path selector (the
order of projection must not be permutable between each hop).
Typically, the path selector field can be included in the flow
label of an IPv6 header or using TCP ports for IPv4/IPv6. It
is possible to use the layer-4 transport ports if there is no NAT
or middle-boxes between the two hosts.

To perform an optimal path exploration (i.e, all possible
forwarding paths are explored), the path selector should not
be used identically by each router (or equivalently), otherwise

6Note that the re-computation of new sharing ratio after a failure also
exacerbates the head of line blocking problem. Let us consider several next
hops and a proportional static sharing ratio towards a givendestination: if
one of this next hops fails the proportions have to be re-computed and even
flows not directly impacted by the failures can be redirectedvia a different
next hop.
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the number of paths potentially explored can become low7.
Considering a pair (source,destination) and the set of routes
R linking these two routers, the path exploration is optimal if,
for any routesz P R, each routerr P z can use a number of
bits n verifying 2n ¥ m wherem is the number of valid next
hops for the pair (r, destination). Note that each router on a
given routez should use a different subset of bits. Thus, the
size (in number of bits) of the path selector must be greater
than rlog2|R|s where|R| is the total number of routes. Using
an arbitrary number of bitsN in order to limit the size of the
path selector, it is possible to explore2N routes if there exists
at leastN routers on each routez P R having at least two
next hops towards the destination.

Our goal is to deploy such an approach without forgetting
to take into account the side effects of failures in order to
improve the efficiency of LFAs. To minimize the flapping due
to failures, we propose a fast re-routing scheme selecting LFA
next hops which are also local post-convergence next hops.
Our approach focuses on the set of next hops used after the
convergence of the routing plane. Then, it locally8 minimizes
the flapping to at most one change per flow per failure instead
of two. We have shown in Sec. VI-C that LFA next hops are
generally post convergence next hops: by removing LFA next
hops that are not post-convergence, we loose less than 7% of
coverage (between 1% and 7% on real weighted topologies).
Our algorithm guarantees two properties:

(i) the post convergence nature of LFA next hops, e.g., we
minimize the head of line blocking issue.

(ii) a computation time inferior to two SPF computation
instead of a computation time of deg(s) SPF.

We believe that those two advantages are good incentives to
use our approach. In our combined approach (load balancing
and fast re-routing modes), note that we can also validate
non post convergence LFA next hops which verify the DC
rule considering the optimal alternate path cost instead ofthe
primary one. Indeed, it allows to increase the coverage without
loosing the post convergence property (i) because those next
hops will be used as DC next hops for load balancing after the
convergence of the routing plane. To summarize the general
approach, let us consider that each source tags its packets with
a given path selector. When such a packet arrives on a router
r, r applies a specific hash function on the path selector to
compute the next hop to use. The projection ratios of the hash
function have to be re-computed each time a topology change
occurs to remove failed next hop (or add new ones). To limit
those changes in case of failures, we focus on MP and FRR
that are post convergence next hops. In addition, we argue

7Note that if each consecutive routers uses a different hash function
projecting the subset of path selector combinations it receives towards a large
subset of its valid next hops, the path exploration can be close to the optimum
without IP header modification. In a same way, using a local identifier to
modify the behavior of a global hash function, it is possibleto statistically
achieve a near optimal path exploration: the necessary condition is to perform
successive hashes perturbing the order of the path selectorprojection.

8Note that some flows can be deflected uptream of the failure after the
convergence of the routing plane. Then, those flows will be deflected twice
anyway.

that load sharing ratios re-computation for the PR/MP set is
not necessary during the transient period of topology changes,
such that we simply deflect impacted packets to another viable
path until the new FIB has been updated.

V. RELATED WORK

Compared to the basic kSPF algorithm, another way to
compute a set of multiple paths is to use an enhanced Shortest
Path First algorithm to locally compute multiple paths for each
destination. For example, algorithms and implementations
presented in [36] have been designed to compute the set ofK-
shortest elementary paths. However, those algorithms do not
guarantee that computed paths are first hop distinct. TheK-
shortest paths problem is not suited for hop by hop forwarding.
Indeed, in order to forward packets via theseK explicit paths,
a signaling protocol is necessary to establish the forwarding
paths from the ingress router towards each egress router.

Eppstein [16] also proposes several algorithms for the
K-shortest paths problem, and presents in [15] an almost
exhaustive bibliography of this issue. However, most of these
solutions are not applicable for hop by hop multipath routing
since the computed paths are neither elementary nor first hop
disjoint. Note that Suurballe [40] proposes an algorithm for
disjoint paths computation. This issue is more restrictivethan
the computation of first hop disjoint paths and so reduces the
number of candidate next hops.

Another related work enhancing such a SPF computation
is a proposition of Topkis [42]. He presents an algorithm
computing theK-best first hop disjoint alternate paths whose
time complexity is in OpK SPF q. If the ranks of valid
alternate next hops, as defined in Table I, are lower than
the degree of the router, this algorithm allows to reduce the
time complexity required for the validation phase (compared
to kSPF). However, in the worst case, if all alternate paths
have to be computed to ensure the complete termination of
the validation phase, then this algorithm induces the same
complexity as kSPF. Furthermore, TBFH allows to uncouple
the primary next hops set computation from the alternate next
hops validation into two consecutive phases.

The use of incremental SPF methods (e.g, [28] or [34])
allows to quickly re-compute a new SPT using the knowledge
of the previous computed one. The required time complexity
depends on the position of the topology change in the SPT. If
the change is local to the calculating router, the gain in time
complexity can be unsignificant. Note that Cisco routers use
a full SPF to handle local failures [2].

Chen and al. propose in [10] a multipath method based
on path suffix similar to the work presented in [26]. In
this case, the forwarding mechanism changes the destination
lookup paradigm. The forwarding scheme depends on extra
information carried in each packet: a path suffix field which
indicates the remainder of the path to use in order to prevent
the formation of forwarding loops. This technique induces a
change in the forwarding plane of all routers whereas our
approach is incrementally deployable.
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In [46], Yang and Wetherall introduce a set of loop-free
rules whose flexibility allows to increase the number of valid
neighbors. This set of rules implies that the forwarding mech-
anism has to be specific to the incoming interface. It allows
forwarding loops at the router level but not at the link level: a
packet is never forwarded through the same link twice but can
enter the same router twice. Thus, delays can increase if paths
contain several times the same router: it may unnecessarily
consume more resources (e.g, routers CPU, bandwidth).

In [35], authors present a multipath computation algorithm
called MARA calculating a directed acyclic graph per destina-
tion. This approach allows to generate a large set of forwarding
paths optimizing several objectives such as the maximum
connectivity. However, the time complexity of their approach
is in Op|N | � SPF q.

VI. EVALUATION AND IMPLEMENTATION

A. Methodology

We use our own SPF computation framework (available
online at [3] and coded in C for efficiency) to compare several
routing approaches. We have implemented a classical Dijkstra
SPF and extended it to support TBFH and kSPF algorithms.
We have also implemented the DC and LFA rules for the
path validation phase. Using a large variety of topologies,we
show that our algorithm is able to compute almost the same
path diversity as kSPF but with a lower time complexity as
demonstrated in Sec. VI-B.

We present results obtained on three different kinds of
topologies: actual, inferred and generated topologies. The
first category of networks are real topologies with their IGP
weights (for confidentiality, we anonymize some of them and
we approximate the dimensions given in Table IV). Topologies
denoted ISP1 and ISP2 are commercial networks covering
an European country. ISP3, ISP4, ISP5 and ISP6 are Tier-1
ISP networks. The second category of topologies were chosen
among the Rocketfuel inferred set of networks given in [27].
The inferred IGP weights are also provided for the subset of
topologies that we select.

Finally, we have also used the IGEN topology generator
[37] in order to obtain a set of homogeneous topologies of
various sizes. We have generated a set of topologies containing
between500 and5000 nodes using theDelaunay-triangulation
heuristic (see [38] for details). The Delaunay-triangulation
parameter offers a great degree of path diversity compared
to other heuritistics provided by IGEN. Networks providing
a high degree of path diversity stresses the SPF computation:
this is useful to evaluate SPF algorithms performances. The
IGP weights used for those topologies are either fixed to1

(denotedf in Fig. 7) or uniformly distributed with integer
values belonging to the ranger1, 10s (denotedu in Fig. 7).

We present two kinds of results. The first highlights the low
time complexity of TBFH while the second shows that our
algorithm provides a coverage close to the optimum (using
kSPF).

B. Time Complexity Results

In this section we analyse the time complexity of TBFH
compared to kSPF. For that purpose, we perform realtime mea-
surements. Note that our computation time results are absolute
(e.g., they depend on the CPU we use) and given in micro
seconds, but the relative comparison between the different
algorithms we consider is meaningful. Mesurements have been
performed on a CPU with a frequency of 2.4Ghz. Furthermore,
note that we have implemented an improved version of the
basic kSPF in order to offer a more competitive comparison.
kSPF denotes here an improvement based on a computation
entirely rooted at the calculating node. Indeed, it is possible to
reduce the computation time considering the nature of DC and
LFA loop-free rules: a neighbor using the calculating node as
its primary first hop for a subset of destinations cannot be a
DC or a LFA next hop for those destinations. In order to avoid
the computation of useless candidate next hops, we perform
a specific operation per neighbor. Our improvement of kSPF
needs as many SPF computations as the basic kSPF, but by
removing all edges connected to the root node except the one
towards a given neighbor at each iteration, we are able to
optimize the computation. Indeed, if a given neighbor is unable
to reach a large subsetZ of destination nodes without going
through the calculating node, then the SPF time complexity
for this neighbor depends on|N | � |Z| (and not on|N |).
Thus, if the network is not 2-node connected (the removal of
the calculating node partitions the graph in several connected
components), then this kSPF optimization can save many CPU
cycles.

To optimize a SPF computation, the first important choice is
the kind of PQ. We have implemented four kinds of PQ. The
first one (denotedAL) uses anaivestatic array list, while the
second one (denotedLL) uses a doubly linked list to reduce the
cost of theextract min operation. The two other PQ are more
sophisticated: our third PQ (denotedLL+) also uses a doubly
linked list but optimizes theextract min operation whereas
our last PQ (denotedB-HEAP) uses a binary heap structure.
Note that the LL+ PQ provides an amortized time complexity
of OpNq per SPT computation if the link valuation is the
same for all links (as with a B-HEAP PQ). More details about
various PQ implementations can be found in [47].

The LL+ PQ takes advantage from the specific primary path
cost distribution in IP networks. Indeed, when shortest path
costs are distributed in a way that favor the probability of
extracting successively a same minimal cost during the SPF
execution, the time complexity of a SPF algorithm can be
strongly reduced. In practice, if there exists a low number of
shortest path costs compared to the number of nodes, LL+
allows to achieve an amortized linear time complexity. In
a simple case, when IGP weights are equal, the number of
different shortest path costs is equal to the network diameter
which is generally very low compared to the number of
nodes. In usual IP networks, IGP weights are distributed in a
small subset of values corresponding to link capacities. Thus,
the additive combinations of such weights are also limited.
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This observation favors the use of LL+ in most of actual
networks. Obviously, if IGP weights are chosen among a large
set of floating values (such as with Abilene which uses link
latencies instead of link capacities), LL+ does not result in
any performance gain.

Technically, LL+ is an extension of a LL PQ where the
PQ structure is identical: a doubly linked list. However, the
operationextract min is slightly modified:

- If the head of the linked list has a cost equal to the current
minimal one (the cost towards the last explored node), the
extract min operation directly extracts the head without
searching for themin: there cannot exist a cost strictly
lower than this one.

- Otherwise (the head key cost is greater than the current
min), the extract min operation must perform its goal:
searching for themin. During this phase, all costs equal
to the lastmin founded are consecutively linked to the
head of the doubly linked list.

Moreover, note that theinsert keyoperation must insert new
explored keys to the tail of the list (its cost is necessarily
strictly greater than the currentmin). Using LL+, the number
of min searching is strongly reduced compared to LL. Indeed,
if Z denotes the number of different primary path costs,
then LL+ only performsZ min searches. Hence, the time
complexity of a SPF using LL+ is in0pZN � E �N � Zq.
When Z is low which is typically the case on actual IP
networks, the time complexity provided by LL+ is near-
optimal. If the metric is the number of hops, thenZ is equal
to the network diameter.

For the sake of clarity, we only use the PQ providing the
best performances on average (for realistic topologies, see 5
and Table IV): LL+. SPF performance comparisons are not
realistic with a non efficient PQ. Using an efficient PQ allows
us to compute a lower bound on the time complexity gain
provided by TBFH. With a naive PQ, we may overestimate
the performance of TBFH compared to kSPF because the use
of non efficient PQ can hide the cost of additional optimization
operations. The gain provided with an optimized PQ is gener-
ally asymptotic: it is only achievable for sufficiently large IP
networks. Fig. 5 illustrates this behavior (note that the y-scale
is logarithmic). For small actual networks, optimized structures
such as a B-HEAP degrades the performance compared to LL+
(and even compared to a simple LL for very small networks
whose nodes number is lower than50). However, for large
actual networks (ISP6 on Fig. 5, the gain is asymptotic: the
larger is the network, the higher the gain provided by the B-
HEAP is. In particular, this gain is achieved when the topology
is highly meshed because the number of keys contained in
the PQ can be large during the SPF computation. For large
generated topologies (shown in Fig. 6 with theu-parameter),
the B-HEAP does not provide any gains because the PQ never
contains a sufficient number of keys. Indeed, the main gain
of heaps comes from thelog factor applied to the number
of keys contained in the PQ. Consequently, we do not have
implemented a Fibonnaci Heap because its gain is even more

asymptotic than a B-HEAP while usual IP networks are rarely
larger than 1500 nodes.
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Fig. 6. PQ performance comparison on generated networks

Using our LL+ PQ implementation, we evaluate the perfor-
mance of TBFH compared to a kSPF algorithm. Considering
all nodes in the generated network, Fig. 7 plots the average
computation time required by kSPF and TBFH to compute
their sets of primary and candidate next hops. We firstly
notice that TBFH allows to save many CPU cycles: for large
topologies, the average computation time is almost dividedby
two with TBFH compared to kSPF. We also observe that the
cost of SPT computations are greater for topologies with non
fixed weights: the computation time becomes greater with the
u-parameter. This loss of efficiency is due to the design of the
PQ: the number of different primary path costs is higher with
topologies using heterogeneous IGP weights.

Then, we can emphasize nodes where the CPU gain is
the most important. Table III gives a closer look at the
computational time for all our actual networks (their dimen-
sions are given in each figure caption:p|N |, |E|q). We plot
the average computation time required for ECMP, kSPF and
TBFH according to the node degrees. Note that we also
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Fig. 7. Computational time of kSPF vs. TBFH (IGEN networks)

provide node degree distributions.
In practice, a kSPF algorithm should be used after an initial

SPT computation rooted at the calculating node. It allows to
first compute the set of primary next hops to shorten the IGP
convergence time, and then compute and validate LFA and/or
DC next hops in background. Those two phases should be
uncoupled in order to minimize the primary next hop activation
time. Thus, a kSPF algorithm requires in practicepdegpsq�1q
SPF computations whereas, by design, TBFH uncouples those
two phases: TBFH-1 and TBFH-2. Consequently, for kSPF, we
have added in our measures the computation time necessary
to perform the initial SPT computation.

We observe that the computation time of TBFH does not
depend on the node degree whereas the computation time
of kSPF increases linearily withk � degpsq. In particular,
we observe that the additional computation time necessary
for TBFH-2 is relatively small compared to a single SPF
computation (ECMP). For example, in ISP6, for nodes having
a degree of10, on average, a single SPF computation requires
about 1ms while TBFH adds only 1.5ms. In comparison, kSPF
requires almost 10ms. For nodes having the largest degree (28
neighbors), the computation of kSPF time is greater than 30
ms on average.

Furthermore, for some routers having a large degree (see
for example the router of degree 12 in the Telstra network),
the computation time seems to be very low because they
are connected to leaf nodes. When this is the case, our
improved version of kSPF is really useful in order to scale
with the number of neighbors which are connected to the main
connected component of the network (even with the removal
of the calculating node).
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Ebone (87,322) - Degree distribution Computational time (µs)
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Telstra (108,306) - Degree distribution Computational time (µs)

 0

 5

 10

 15

 20

 25

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

F
re

qu
en

cy

Node degree

Degree distribution

 0

 200

 400

 600

 800

 1000

 1200

 1400

2 3 4 5 6 7 8 9 10 11 12 13 14 16 20

T
im

e 
co

m
pl

ex
ity

 (
m

ea
n 

an
d 

sd
 in

 m
ic

ro
 s

ec
on

ds
)

Node degree

ECMP
kSPF
TBFH

AboveNet (141,748) - Degree distribution Computational time (µs)

18



 0

 5

 10

 15

 20

 25

 30

 35

 40

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

F
re

qu
en

cy

Node degree

Degree distribution

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

2 3 4 5 6 7 8 9 10 11 12 13 14 16 18 29

T
im

e 
co

m
pl

ex
ity

 (
m

ea
n 

an
d 

sd
 in

 m
ic

ro
 s

ec
on

ds
)

Node degree

ECMP
kSPF
TBFH

Tiscali (161,656) - Degree distribution Computational time (µs)
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TABLE III: Computional times per node degree (and respective node
degree distributions)
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The time complexity gain provided by TBFH increases
according to the degree of the calculating node and the
graph size. Indeed, the gain for smaller topologies such as
ISP3 is comparatively lower because it is simply proportional.
Our algorithm is designed for large topologies and bounds
the computational overhead of each router to less than one
additional SPF. TBFH is an efficient algorithm to limit the
time complexity overhead for nodes having large degrees.Table
IV gives the average computation time of kSPF and TBFH
for all actual and inferred topologies of our set of evaluation
networks.

C. Coverage and Path Diversity Results

In this section, we focus on thecoverage, e.g., the ability to
provide at least two forwarding choices, of several routingand
algorithmic approaches. In practice, we evaluate the coverage
of TBFH compared to the optimal one provided by a kSPF
algorithm. Generally, the notion of coverage is used to evaluate
the capacity of protection provided by fast reroute techniques.
However, we also use it to evaluate the forwarding diversity
in a load balancing context. Indeed, for load balancing, the
coverage allows us to measure the forwarding diversity using
a power of twoperspective [31]. We argue that this measure is
more meaningful than computing an average number of loop-
free next hops because it allows to know the fraction of pairs
(router,destination) which can (or not) take advantage of at
least two next hops.

For a graphG and according to a path computation algo-
rithm alg and a loop-free ruler, the coveragecovpG, alg, rq
is computed as the following ratio:

covpG, alg, rq � ¸�pn, dqPN

vNHpn, dq|N | � p|N | � 1q (7)

wherevNHpn, dq is equal to1 if the algorithmalg computes
at least one valid loop-free next hop using ruler on the node
n towards the destinationd, otherwisevNHpn, dq � 0.

Table IV summarizes the characteristics of our set of actual
and inferred networks and highlights the tradeoff between
coverage and computation time.
We have analysed the number of pairs of routers which can
benefit from ECMP, DC and LFA. We organize Table IV
according to the multipath objective: with ECMP and DC,
alternate next hops can be used for both fast re-routing and
load balancing purposes (the MP set) whereas LFA next hops
are used only in case of failure (the FRR set).

In this first study, the term coverage is local and given
with formula (7). We measure the percentage of pairs of
routers taking advantage of at least one valid alternate path,
a kSPF algorithm providing the upper bound: the optimum
value (denotedoptimal in Table IV). Our main concern is to
analyze the ability of TBFH and TBFH” to achieve a coverage
close to the optimum. Indeed, TBFH or TBFH” might miss
some valid next hops because it focuses on optimal 1-alternate
paths and their post convergence resulting next hops.

Table IV provides a global overview of DC and LFA
coverages for each evaluation topology. We observe that,
in most cases, DC or LFA next hops are also local post
convergence next hops: the coverage capacity is only slightly
impacted by focusing on post convergence next hops. Indeed,
coverage results of TBFH are very close to the upper bound
(using kSPF). The greatest difference is about 7% for Ebone
and ISP5 networks using the LFA rule, and lower than 4% on
average for the DC rule (the worst case is for ISP5 with 9%).

This low difference is particularly interesting considering
the LFA rule because next hops guaranteeing the local post
convergence property ensure a stable re-routing scheme (see
Sec. IV-B). We can also notice that the standard deviation
around the mean of the computation time required by TBFH is
very low. Indeed, TBFH does not depend on the degree of the
calculating node whereas kSPF depends on it by definition.
On the contrary, using kSPF for large IP networks such as
ISP6, the standard deviation is very high :� 5000µs for kSPF
(instead of� 150µs for TBFH).

For TBFH”, note that we only select LFA next hops which
can be used after the IGP convergence. Either they are local
post convergence LFA according to Definition 1 or they verify
the DC rule for the post convergence best costC2ps, dq.
Indeed, it means that they can be used in the MP set after the
IGP convergence without generating path flapping. In practice,
TBFH” can validate more LFA next hops if we do consider
this property. However, we can observe that TBFH” provides
an excellent tradeoff between coverage and computation time
as highlighted in Table IV. For the DC rule, the worst case is
ISP3 with a difference of 3%. For the LFA rule, the biggest
difference is 6% for ISP6: it means that the remaining 6% of
LFA next hops do not ensure the post convergence property.

In order to quantify the coverage as an end to end measure,
we have also computed an end to end protection ratio. Those
results indicate the probability of coverage for each primary
path, i.e., the probability of having an alternate forwarding
path not using a given link belonging to the primary route. For
the DC rule and for each pair of nodes, the set of alternate
routes forms a directed acyclic graph (DAG): using the DC
rule, load balancing next hops are distributively composed
to form a DAG per pairpsrc, dstq. For all primary paths
having the same number of hops9, we compute an end to
end coverage ratio. This ratio quantifies the average numberof
links belonging to the primary path which can be circumvented
thanks to one or several alternate forwarding paths in the DAG.
To achieve this ability, either we must consider a back-pressure
mechanism such as the one described in [20], or use a path
selector field to allow sources to explore all the DAG.

For the LFA rule, the measure has the same sense but
the computation method is different. Indeed, for a given pairpsrc, dstq, several LFA next hops cannot be simultaneously
used otherwise their composition may form cycles (the LFA
rule only supports single link failure, otherwise forwarding
loops may appear). At each hop of the primary path, we check

9Note that primary paths have been computed according to links weight.
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TABLE IV
LOCAL COVERAGE AND COMPUTATION TIME ON REAL AND INFERRED TOPOLOGIES

Load Balancing Fast Re-Routing Computation
Network Size Coverage (%) Coverage(%) Time (µs)

name ECMP DC LFA mean & standard deviation|N | |E| TBFH TBFH” optimal TBFH TBFH” optimal ECMP TBFH TBFH” kSPF
Abilene 11 28 0 39 39 39 61 65 65 4 �1 8 �1 9 �3 11 �2

Geant 22 72 0 69 69 69 86 86 89 9 �1 18 �1 22 �3 34 �11

ISP1 25 50 0 5 5 5 19 19 19 9 �1 17 �1 22 �2 30 �5

ISP2 55 200 3 49 49 49 83 83 84 22 �1 43 �1 53 �11 99 �72

ISP3 110 350 10 34 36 39 57 58 61 46 �1 90 �8 113 �19 188 �71

ISP4 140 410 8 28 30 32 48 49 51 56 �1 104 �15 136 �30 219 �90

ISP5 210 800 20 56 64 65 74 77 81 105 �2 199 �9 252 �43 473 �225

ISP6 1170 4200 22 54 56 57 64 64 70 1105�49 1987�160 2292�503 5555�5288

Exodus 79 294 16 47 49 50 70 72 75 34 �1 69 �3 90 �14 153 �60

Ebone 87 322 17 42 44 45 64 66 71 37 �1 75 �6 97 �17 174 �65

Telstra 108 306 7 21 21 21 37 38 39 42 �1 81 �9 104 �22 185 �89

AboveNet 141 748 17 62 65 66 82 85 87 66 �5 137 �13 212 �51 410 �201

Tiscali 161 656 13 42 44 44 58 59 62 71 �2 143 �14 207 �59 384 �246

Sprint 315 1944 27 61 65 65 85 86 86 159 �3 335 �15 554�249 1126�1010

if a LFA next hop exists or not, and then we measure the
average number of links which can be covered with a local
LFA along the primary path. Plots given in Table V use the
same x-axis: the number of links on the primary paths. Table
V(a) provides the primary paths distribution in terms of hops
number.

Table V(b) provides the ECMP and TBFH end to end
coverage considering the DC rule compared to the upper
bound provided by a kSPF algorithm (optimal). Table V(c)
plots the TBFH end to end coverage considering the LFA rule.
These plots allow to analyze coverage results given in Table
IV more deeply.

For the LFA rule applied to ISP5 (the worst case), we
notice that links which are LFA covered seem to be less
used by primary routes than links which are not. Indeed,
the average coverage of almost 76% given in Table VI-C is
lower than the 81% provided in Table IV: this means that less
primary routes goes through LFA covered links than through
non covered links. The LFA and DC coverage distribution
obviously depends on the topology: we do not observe this
loss of LFA coverage in all topologies as shown in Tables V
and VI-C.

For the DC rule, end to end coverage optimal results are
better than the local ones given in Table IV because we
consider the possibility to balance the load anywhere along
the DAG (not only at the router with the failed/congested
link). In practice, for ISP5, the increase of coverage is about
15% on average (DC achieves an end to end coverage of
79%) meaning that DC is able to significantly cover these
networks if we consider the possibility to notify a failure or a
congestion upstream to the detected outage. Indeed, if packets
can be deflected upstream to the congested (or failing) link,
the DAG is able to cover almost all the links used in the
path (in particular, for long paths). We can also remark that
short paths are not well protected using the DC rule because
destination nodes are too close to find valid alternate paths.
Note that if there exists a DC or LFA next hop covering the

destination node corresponding to the head of a given link,
then all destinations using this link through their primarypath
are also covered. This property is respectively called per-link
DC and per-link LFA: it denotes the case where all destinations
using a given primary next hop are protected.
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Abilene - (a) Primary paths distribution (b) DC E2E Coverage (c) LFA E2E Coverage
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Geant - (a) Primary paths distribution (b) DC E2E Coverage (c) LFA E2E Coverage
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ISP1 - (a) Primary paths distribution (b) DC E2E Coverage (c)LFA E2E Coverage
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ISP2 - (a) Primary paths distribution (b) DC E2E Coverage (c)LFA E2E Coverage
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ISP3 - (a) Primary paths distribution (b) DC E2E Coverage (c)LFA E2E Coverage
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ISP4 - (a) Primary paths distribution (b) DC E2E Coverage (c)LFA E2E Coverage
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ISP5 - (a) Primary paths distribution (b) DC E2E Coverage (c)LFA E2E Coverage
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ISP6 - (a) Primary paths distribution (b) DC E2E Coverage (c)LFA E2E Coverage
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Exodus - (a) Primary paths distribution (b) DC E2E Coverage (c) LFA E2E Coverage
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Ebone - (a) Primary paths distribution (b) DC E2E Coverage (c) LFA E2E Coverage
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Telstra - (a) Primary paths distribution (b) DC E2E Coverage (c) LFA E2E Coverage
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AboveNet - (a) Primary paths distribution (b) DC E2E Coverage (c) LFA E2E Coverage
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Tiscali - (a) Primary paths distribution (b) DC E2E Coverage (c) LFA E2E Coverage
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Sprint - (a) Primary paths distribution (b) DC E2E Coverage (c) LFA E2E Coverage
TABLE V: End to end coverage results of TBFH (per primary path
length)
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For the DC rule, the difference seems even more significant
than with LFA because alternate next hops can be composed
all along the DAG. However, the difference with the optimum
remains low compared to ECMP: in the worst case for the DC
rule (ISP5), the loss is lower than 16% on average (instead of
more than 50% with ECMP). For the LFA rule and considering
the worst case, the difference is always lower than 20%
whatever the length of the primary path.

Table V also analyzes whether the loss of coverage of
TBFH seems more significant using an end to end perspective.
This series of plots intends to show cases where TBFH
(and ECMP) miss valid alternate next hops. The difference
of coverage is greater than in Table IV meaning that the
loss is not uniformly distributed. Although the differenceof
coverage appears greater than in Table IV, these results allow
to emphasize limitations of the basic version of TBFH: (i)
it only computes two next hops per destination (and that can
lead to a loss of path diversity when used with the DC rule10),
(ii) it may miss valid next hops located at key positions in
the network. More precisely, candidate next hops which are
not computed with TBFH do not seem uniformly distributed
across the network: links which are not covered by TBFH seem
to be a little bit more useful than covered ones (in terms of
number of primary routes using them). In practice, we observe
that the loss of coverage caused by TBFH seems to be due to
links located in the core of the network.

For example, compared to kSPF, the average loss of cov-
erage due to TBFH is about15% for 6 hops paths whereas
the local loss coverage is lower. With TBFH”, this average
loss is reduced to less than10%. LFA next hops which
are not computed by TBFH are not uniformly distributed
across the network: links which are not covered with a post
convergence next hop are more used than covered ones (in
terms of number of primary routes using them). Indeed, such
a loss of coverage compared to results given in Table IV
implies that the TBFH ability to compute alternate next hops
is not uniformly distributed accross the network. However,this
difference remains relatively low. In practice, we observethat
TBFH” is able to provide a very good DC coverage whereas
the loss of coverage for LFA next hops is mainly due to the
post convergence property.

Compared to ECMP, TBFH and TBFH” provide excellent
coverage results. TBFH only requires a complexity equivalent
to ECMP in terms of computation and deployment while the
time complexity overhead of TBFH” is very limited compared
to kSPF. Although the computation time remains low as shown
in Table VII(a), the DC and LFA coverage provided by TBFH”
is closer to the optimal. As highlighted in Table VII(b) and (c),
TBFH” provides a good tradeoff between coverage and time
complexity: there is only a slight dependence on the degree
of the calculating node.

Table VI-C also emphasizes the difference between the
end-to-end coverage and the local one (given in Table IV).

10For the DC rule, the difference may seem even more significantbecause
alternate next hops can be composed all along the DAG.

Using this perspective, the gain of coverage provided by
TFBH” appears more significant than using the local coverage
perspective. However, we can notice that the second best next
hop (provided by TBFH) is generally sufficient to provide the
best DC or LFA loop-free next hop. Indeed, in the majority of
the cases, the coverage is ensured by post convergence next
hops.

Using TBFH”, the extension of TBFH requiring an addi-
tional time complexity ofdegpsq |E|, the coverage can be
strongly improved. Indeed, although the computation time
remains low, the DC and LFA coverage are closer to the
optimal. TBFH” is able to compute more next hops than
TBFH and this difference is more significant using and end to
end perspective: additional next hops are composed between
neighbor routers to form more routes. This improvement
explains why TBFH” gives better results than TBFH using
a metric taking into account all the path diversity. Moreover,
it allows routers to compute valid alternate next hops located
at the core of the network (the ones which are the more used in
terms of the number of routes going through them). It is also
worth to notice that the TVFH algorithm given in Sec.??
is able to compute at least one valid alternate next hop if
necessary. The variants of TBFH allows routers to perform
a good tradeoff between alternate path optimality and end to
end coverage.

To summarize, we have seen that TBFH and even more
TBFH” provide excellent coverage results, close to optimal
ones (using a kSPF algorithm). TBFH and TBFH” also ensure
the post convergence property for LFA next hops while their
time complexity remains very low as shown in Sec. VI-B
and Sec. VI-C. Compared to ECMP, our algorithms strongly
improve the diversity of forwarding paths without leading to a
significant computation and deployment overhead. Finally,its
set of algorithmic variants allow one to provide a modular and
extensible framework for fast re-routing and load balancing
purpose.
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Network DC rule LFA rule
Name ECMP TBFH TBFH” optimal TBFH TBFH” optimal

Abilene 0.00 40.94 40.94 40.94 45.55 47.57 47.57
Geant 0.00 66.71 66.71 66.71 62.52 63.53 67.99

ISP1 1.45 6.81 6.81 6.81 13.54 13.54 14.51
ISP2 17.11 48.01 49.89 49.89 41.26 41.47 43.97
ISP3 13.13 40.27 47.51 52.36 48.85 50.69 56.70
ISP4 12.14 37.33 44.37 48.75 45.82 47.48 52.82
ISP5 24.81 61.12 77.32 78.81 59.29 68.18 76.18
ISP6 28.69 53.07 62.61 65.69 68.46 73.01 77.38

Exodus 21.45 60.59 65.55 67.06 57.41 60.42 66.23
Ebone 24.97 53.67 55.38 56.66 49.65 53.02 60.27
Telstra 12.21 34.43 34.97 35.04 46.15 47.05 48.57

AboveNet 25.48 77.74 81.49 82.33 74.24 80.51 86.32
Tiscali 21.81 65.02 67.59 68.90 53.10 56.81 66.81
Sprint 31.66 72.41 78.63 79.54 78.87 83.46 86.58

TABLE VI
END TO END COVERAGE AVERAGE RESULTS FORTBFH AND TBFH”
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TABLE VII: End to end coverage result of TBFH”
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VII. C ONCLUSION

Multipath routing enhances the network reliability: it allows
for load balancing and fast re-routing to circumvent conges-
tions and failures. However, the overhead imposed by signaling
messages, the time and space complexity of multiple routes
computation can hamper its deployment.

In this paper, we propose an efficient algorithm, TBFH,
which provides a greater path diversity than ECMP with a
very low overhead. In particular, TBFH efficiently computes
the two best first hop disjoint paths. The time complexity of
TBFH does not depend on the degree of the calculating router.

Furthermore, we propose a general multipath forwarding
scheme that provides load balancing and fast re-routing next
hops. One possible application of this scheme is to expose
the forwarding diversity to the end hosts and allow them to
control load shifting decisions thanks to a tagging mechanism.
We have considered two validation rules ensuring loop-free
forwarding, the downstream criterion for load balancing, and
the loop-free alternate rule for local fast recovery. In a hop
by hop forwarding context, the alternate next hops computed
with TBFH are called local post convergence next hops. This
set of next hops minimizes the number of flow deflections in
case of failure.

Using a large set of topologies, we have shown that local
post convergence next hops are in more than 90% of the cases
the best loop-free alternate next hops. Our proposition canbe
incrementally integrated in OSPF or IS-IS by replacing the
path computation algorithm without any additional messages
in the control plane. Our solution is scalable for large IP net-
works with high degree routers and can operate in conjunction
with routers using ECMP as well with non multipath-capable
ones.
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