Graceful Operations in Link-State
Routing Networks

Francois CLAD', Pascal MERINDOL', Jean-Jacques PANSIOT',
Stefano VissiccHIO? and Pierre FRANCOIS®

UDS (France), 2UCL (Belgium), 3Cisco

-~ ucL afraln
J o cisco

June 12th, 2013
Research unit in networking seminar

Introduction

0 Introduction

Introduction
[]

Some context

@ Routing in ISP networks (intra-domain)
o Link-state protocols: OSPF, IS-IS

@ Frequent topological changes

o Maintenance operations on links or nodes
o Traffic engineering (weight modifications)

@ ...and as many convergence periods

@ Transiently inconsistent state
@ Possible traffic disruption

Introduction
[]

Some context

. (Detect
@ Routing in ISP networks (intra-domain) change

o Link-state protocols: OSPF, IS-IS

@ Frequent topological changes

o Maintenance operations on links or nodes
o Traffic engineering (weight modifications)

Convergence period
N

@ ...and as many convergence periods
o Transiently inconsistent state

@ Possible traffic disruption @
FIB
_
3

Transient loops

9 Transient loops

Transient loops
[]

How do transient loops appear?

Routers’ update order is not controlled!
(depends on LSA flooding and RIB/FIB update times)

Example: . o
@ |Initially, both a and b reach d through a; outes towards d-
@-.__ P
A Tt~
il N
:
[}
® P

Transient loops
[]

How do transient loops appear?

Routers’ update order is not controlled!
(depends on LSA flooding and RIB/FIB update times)

Example: R
@ Initially, both a and b reach d through a; outes towards
Path through b more interesting, even for a; ~~

@ A change occur on the network; (@-__ P
; -
I
I
|

&~

Old: Py << P>
New: P{ >> P,

Transient loops
[]

How do transient loops appear?

Routers’ update order is not controlled!
(depends on LSA flooding and RIB/FIB update times)

Example:
@ Initially, both a and b reach d through a;

@ A change occur on the network; @ P;
Path through b more interesting, even for a;

@ If a updates first and starts sending data
towards d through b, while b still uses a;

Routes towards d:

Old: Py << P>
New: P{ >> P,

7 T

-

P,

Transient loops
[]

How do transient loops appear?

Routers’ update order is not controlled!
(depends on LSA flooding and RIB/FIB update times)

Example: R ds -
@ Initially, both a and b reach d through a; outes towards d:
@ A change occur on the network; @ P;
Path through b more interesting, even for a; 14 D
\
@ If aupdates first and starts sending data LPOR !
towards d through b, while b still uses a; ¥
/
@ A transient loop appears on link (a, b); P;
Old: Py << P»

New: P{ >> P,

Transient loops
[]

How do transient loops appear?

Routers’ update order is not controlled!
(depends on LSA flooding and RIB/FIB update times)

Example: R ds -
@ Initially, both a and b reach d through a; outes towards d:
@ A change occur on the network; @ P;
Path through b more interesting, even for a; 1 \
@ If a updates first and starts sending data LPOR !
towards d through b, while b still uses g; Sl
/
@ A transient loop appears on link (a, b); P;
> Increased latency; Old: P, << P,

> Packet losses. New: P} >> P,

Transient loops
[]

How to detect them?

For a given destination (e.g. d):
@ Compute routes before and after the change;

Transient loops
[]

How to detect them?

For a given destination (e.g. d):
@ Compute routes before and after the change;
@ Merge these two directed acyclic graphs (DAG);

Before Merging After

Transient loops
[]

How to detect them?

For a given destination (e.g. d):

@ Compute routes before and after the change;

© Merge these two directed acyclic graphs (DAG);
© Perform a cycle detection on the resulting graph.

Before Merging After

@ @
@ e 2@ @

@
® oR ®

Transient loops
o

How to prevent them?

Force the routers to update in the right order. J

@ |Initially, both a and b reach d through a;

Py + w(b,a) < P>

Transient loops
o

How to prevent them?

Force the routers to update in the right order. J

@ |Initially, both a and b reach d through a;
@ The same change occurs;

Old: Py + w(b, a) < P>
New: P; > w(a, b) + P,

Transient loops
o

How to prevent them?

Force the routers to update in the right order. J

@ Initially, both g and b reach d through a; @~ - P

@ The same change occurs; Tt-oy
@ Yet this time b updates first; -7

® A

Old: Py + w(b, a) < P>
New: P; > w(a,b) + P,

Transient loops
o

How to prevent them?

Force the routers to update in the right order. J

@ Initially, both g and b reach d through a; @ P
@ The same change occurs;

@ Yet this time b updates first; - ”

I
1
I
* -—
@ Then a, and no loop appears. @— - P,

Old: Py + w(b, a) < P>
New: P; > w(a, b) + P,

Transient loops
o

How to prevent them?

Force the routers to update in the right order. J
@ Initially, both g and b reach d through a; @ P
@ The same change occurs; |
@ Yet this time b updates first; ", - d
@ Then a, and no loop appears. @— - P,
One goal, several approaches. J Old: Py + w(b,a) < P

New: P; > w(a,b) + P,

Transient loops
[]

Progressive update

Basic idea
Split up the change into a sequence loop free updates.

Objectives

Compute a sequence of intermediate updates, such that:
@ No transient loop between subsequent updates;
@ Each intermediate update prevents at least one cycle.

Challenge
Minimal operational impact (sequences of minimal length)

Transient loops
L]

lllustration: path increment sequence

Transient loops
L]

lllustration: path increment sequence

@ |Initially, a, b and c reach d through node a.

Transient loops
L]

lllustration: path increment sequence

@ |Initially, a, b and c reach d through node a.
@ [f a change occur on path P(a, d) increasing its cost to 50. ..

Transient loops
L]

lllustration: path increment sequence

@ |Initially, a, b and c reach d through node a.

@ If a change occur on path P(a, d) increasing its cost to 50, all three
nodes will go through cinstead ...

@@

Transient loops
L]

lllustration: path increment sequence

@ |Initially, a, b and c reach d through node a.

@ If a change occur on path P(a, d) increasing its cost to 50, all three
nodes will go through c instead and transient loops may appear.

Transient loops
L]

lllustration: path increment sequence

@ |Initially, a, b and c reach d through node a.

@ If a change occur on path P(a, d) increasing its cost to 50, all three
nodes will go through c instead and transient loops may appear.

With incremental updates: @\ - 2

Transient loops
L]

lllustration: path increment sequence

@ |Initially, a, b and c reach d through node a.

@ If a change occur on path P(a, d) increasing its cost to 50, all three
nodes will go through c instead and transient loops may appear.

With incremental updates: @\ - 75

@ Node c could update first; @/ Tt~ -~

Transient loops
L]

lllustration: path increment sequence

@ |Initially, a, b and c reach d through node a.

@ If a change occur on path P(a, d) increasing its cost to 50, all three
nodes will go through c instead and transient loops may appear.

With incremental updates: @\ - 7589

@ Node c could update first; Tt~os
@ Then b, @ -7

Transient loops
L]

lllustration: path increment sequence

@ |Initially, a, b and c reach d through node a.

@ If a change occur on path P(a, d) increasing its cost to 50, all three
nodes will go through c instead and transient loops may appear.

With incremental updates: @ 78915
@ Node c could update first; /
@ Then b, and g; @\ - *

Transient loops
L]

lllustration: path increment sequence

@ |Initially, a, b and c reach d through node a.

@ If a change occur on path P(a, d) increasing its cost to 50, all three
nodes will go through c instead and transient loops may appear.

With incremental updates: @ Z891550
@ Node c could update first; /
@ Then b, and g; @\ - ’
So that the transition to 50 will ©, o
be loop free.
I I | | 1
2 5 9 15 50

Link shut

Q Link shut

10/27

Link shut
°

Case of a link shut (withdrawal)'

Algorithmic steps

@ Extract destination oriented increment sequences;
@ Merge them into a global increment sequence;

© Prune useless values to build a minimal sequence.

'The same algorithms may be used for any other kind of modification on a
single link (addition, arbitrary weight increment or decrement).

11/27

Link shut
°

Destination oriented sequences: A values

o0 @ o7
e ® To——@

12/27

Link shut
°

Destination oriented sequences: A values

s@/c? ﬂ@/c?

@ Retrieve distances from each affected node to the destination

12/27

Link shut
°

Destination oriented sequences: A values

s@/c? ﬂ@/c?

@ Retrieve distances from each affected node to the destination
@ Compute the difference (A) between new and old distances
o Ala)=14—-2=12
o A(b)=11-5=6
o A(c)=9-7=2

12/27

Link shut
°

Destination oriented sequences: A values

5@/? ﬂ@/ci)

@ Retrieve distances from each affected node to the destination
@ Compute the difference (A) between new and old distances
o Ala)=14—-2=12
o A(b)=11-5=6
o A(c)=9-7=2

Incrementing the weight of link (a, d) by one of these A values
would put the corresponding node in an ECMP transient state.

12/27

Link shut
°

Destination oriented sequences: ECMP state

In an ECMP state, a node uses both its
old and new routes towards the destination.

e
e ®

9

@ A sequence: Sa(d) ={2,6,12}
> First values such that the nodes use their new path(s)

13/27

Link shut
°

Destination oriented sequences: ECMP state

In an ECMP state, a node uses both its
old and new routes towards the destination.

Lo U@
e ®

9
@ A sequence: Sa(d) ={2,6,12}
> First values such that the nodes use their new path(s)
> Does not prevent transient loops

13/27

Link shut
°

Destination oriented sequences: ECMP state

In an ECMP state, a node uses both its
old and new routes towards the destination.

e
e ®

9
@ A sequence: Sa(d) ={2,6,12}
> First values such that the nodes use their new path(s)
> Does not prevent transient loops

@ Increment seq. (A + 1): Si(d) ={8,7,13}
> First values such that the nodes use only their new path(s)

13/27

Link shut
°

Destination oriented sequences: ECMP state

In an ECMP state, a node uses both its
old and new routes towards the destination.

e
e ®

9
@ A sequence: Sa(d) ={2,6,12}
> First values such that the nodes use their new path(s)
> Does not prevent transient loops

@ Increment seq. (A +1): Si(d) = {3,7,13}
> First values such that the nodes use only their new path(s)
@ Weight seq. (A + 1+ w(a,d)): Sn(d) = {5,9,15}

13/27

Link shut
°

Destination oriented sequences: ECMP state

In an ECMP state, a node uses both its
old and new routes towards the destination.

e
e ®

9
@ A sequence: Sa(d) ={2,6,12}
> First values such that the nodes use their new path(s)
> Does not prevent transient loops

@ Increment seq. (A +1): Si(d) = {3,7,13}
> First values such that the nodes use only their new path(s)
@ Weight seq. (A + 1+ w(a,d)): Sn(d) = {5,9,15}

13/27

Link shut
°

Destination oriented sequences: another destination

Current paths New paths

O——@ @ @
®] I o] ¢
©O——@ ©O——@

14/27

Link shut
°

Destination oriented sequences: another destination

JO)

Current paths

7
™~

o2
6——0

10@<

? ¢
O——0

8

14/27

Link shut
°

Destination oriented sequences: another destination

L@
ol ¢
>0

@ Extract A values
@ A(a)=13-3=10
@ A(b)=10-6=4
o A(c)=8-8=0

10@<

? ¢
O——0

14/27

Link shut
°

Destination oriented sequences: another destination

@ @ @
@] | @ |]
©O——0 O—@

@ Extract A values

@ A(a)=13-3=10
e A(b)=10-6=14
@ A(c)=8-8=0

@ Compute an increment sequence: S;(e) = {1,5,11}

14/27

Link shut
°

Global increment sequences

3 7 13
Si(d) t } } +—
1 5 11

15/27

Link shut
°

Global increment sequences

@ Merge destination oriented sequences

> Prevent transient loops for all destinations
> May contain unnecessary values

15/27

Link shut
°

Global increment sequences

Minimize | : : —

@ Merge destination oriented sequences

> Prevent transient loops for all destinations
> May contain unnecessary values

@ Prune redundant values

> Greedy algorithm looking for possible loops at each step
> Ensure the minimality in terms of sequence length

15/27

Link shut
°

Global increment sequences

t
Minimize | fom— } |
3

@ Merge destination oriented sequences

> Prevent transient loops for all destinations
> May contain unnecessary values

@ Prune redundant values

> Greedy algorithm looking for possible loops at each step
> Ensure the minimality in terms of sequence length
> Multiple sequences of minimal length

15/27

Node shut

Q Node shut

16/27

The Node Shutdown Problem

Objective: gracefully reroute the traffic out of a node.)

17/27

Node shut
L]

The Node Shutdown Problem

Objective: gracefully reroute the traffic out of a node.)

@ Simple solution: shut down each
link one by one \ /

> Number of intermediate steps / \

proportional to node degree

17/27

Node shut
L]

The Node Shutdown Problem

Objective: gracefully reroute the traffic out of a node.)
@ Simple solution: shut down each 30300 21
link one by one \y /

> Number of intermediate steps / \

proportional to node degree

17/27

Node shut
L]

The Node Shutdown Problem

Objective: gracefully reroute the traffic out of a node.)
@ Simple solution: shut down each x40 00 21
link one by one AY'VM

O
> Number of intermediate steps / \

proportional to node degree

17/27

Node shut
L]

The Node Shutdown Problem

Objective: gracefully reroute the traffic out of a node.)
@ Simple solution: shut down each x40 00 21
link one by one etz

O
> Number of intermediate steps / WV& =

proportional to node degree

17/27

Node shut
L]

The Node Shutdown Problem

Objective: gracefully reroute the traffic out of a node.)
@ Simple solution: shut down each T
link one by one T2, 22
> Number of intermediate steps Aﬂ,a 3.3, 23

proportional to node degree

17/27

Node shut
L]

The Node Shutdown Problem

Objective: gracefully reroute the traffic out of a node.)
@ Simple solution: shut down each oy
link one by one = 2, y2, 22
> Number of intermediate steps o Yoy 2y Ve 28

proportional to node degree

17/27

Node shut
L]

The Node Shutdown Problem

Objective: gracefully reroute the traffic out of a node.)
@ Simple solution: shut down each oy
link one by one = e, 2, 22
> Number of intermediate steps o Yoy 2y Ve 28

proportional to node degree

@ Better solution: benefit from

existing OSPF / IS-IS features \o/
/ \

> Simultaneous weight
modifications

17/27

Node shut
L]

The Node Shutdown Problem

Objective: gracefully reroute the traffic out of a node.)
@ Simple solution: shut down each oy
link one by one = 2, y2, 22
> Number of intermediate steps o Yoy 2y Ve 28

proportional to node degree

@ Better solution: benefit from X ?
existing OSPF / 1S-IS features \o/;
> Simultaneous weight A &

modifications

17/27

The Node Shutdown Problem

Node shut
L]

Objective: gracefully reroute the traffic out of a node.)

@ Simple solution: shut down each
link one by one
> Number of intermediate steps
proportional to node degree

@ Better solution: benefit from
existing OSPF / I1S-IS features
> Simultaneous weight
modifications

X025

&

X4, Y4, 24

X0

A A

X2, Y2, 22

+X3, Y3,23

+X5, Y3

+X5, ¥4

17/27

The Node Shutdown Problem

Node shut
L]

Objective: gracefully reroute the traffic out of a node.)

@ Simple solution: shut down each
link one by one
> Number of intermediate steps
proportional to node degree

@ Better solution: benefit from
existing OSPF / I1S-IS features
> Simultaneous weight
modifications

X025

&

X4, Y4, 24

1o
+X1 ,y1,Z1

’ ! /
Xy, Vas 2y

X2, Y2, 22

+X3, Y3,23

o0 S
X5 Vo 25

RV
+X3,y3,23

17/27

The Node Shutdown Problem

Node shut
L]

Objective: gracefully reroute the traffic out of a node.)

@ Simple solution: shut down each
link one by one
> Number of intermediate steps
proportional to node degree

@ Better solution: benefit from
existing OSPF / I1S-IS features
> Simultaneous weight
modifications

X025

&

X4, Y4, 24

1o
+X1 ,y1,Z1

’ ! /
Xy, Vas 2y

X2, Y2, 22

+X3, Y3,23

Y
X5 Vo 25

RV
+X3,y3,23

17/27

Node shut
[]

Towards Multi-Dimensional Increments

@ @ Vector of minimum increments such that a node
l X uses a new path, not through n, to reach d.

<—@ Al = C'(x,d) = C(x, |, d)

18/27

Node shut
[]

Towards Multi-Dimensional Increments

@ -~ @ Vector of minimum increments such that a node
l X uses a new path, not through n, to reach d.
1
O—® A3(x)[1] = C'(x,d) — C(x, I, d)

18/27

Node shut
[]

Towards Multi-Dimensional Increments

@ -~ @ Vector of minimum increments such that a node
l X uses a new path, not through n, to reach d.

<— Al = C'(x,d) = C(x, |, d)

18/27

Node shut
[]

Towards Multi-Dimensional Increments

@ @ Vector of minimum increments such that a node
X uses a new path, not through n, to reach d.

<1—@ Ag(N)[] = C'(x,d) = C(x, , d)
13T

@ ; OAg(e):(1B8—(2+1+1+41))

|

O—©

18/27

Node shut
[]

Towards Multi-Dimensional Increments

8
@ @ Vector of minimum increments such that a node
X uses a new path, not through n, to reach d.

@ AJO0 = C'(x,0) — C(x,)

13—(2+1+1+1)
3 —
® 1 oAZ(e)_(137(2+1+1+1+8+6))

18/27

Node shut
[]

Towards Multi-Dimensional Increments

@ @ Vector of minimum increments such that a node
s X uses a new path, not through n, to reach d.
1

&@ Al = C'(x,d) = C(x, |, d)

® O o) = (1371?21(1211 il i;)+ 6)) = (fe)

18/27

Node shut
[]

Towards Multi-Dimensional Increments

@ @ Vector of minimum increments such that a node
X uses a new path, not through n, to reach d.

<1—@ Al = C'(x,d) = C(x, |, d)
13

@ |oeae-(.) - (%)

zT OAg(f):(”’*S)
O,

18/27

Node shut
[]

Towards Multi-Dimensional Increments

8
@ @ Vector of minimum increments such that a node
X uses a new path, not through n, to reach d.

@ AJO0 = C'(x,0) — C(x,)

o ae- (1, GG) - (%)

ZT ® a3 = (1155:137)

O]

18/27

Node shut
[]

Towards Multi-Dimensional Increments

Vector of minimum increments such that a node
X uses a new path, not through n, to reach d.

AG(x)[= C'(x,d) — C(x,], d)

o ae- (1, GG) - (%)

® a3 = (1155:137) - (122>

18/27

Node shut
[]

Towards Multi-Dimensional Increments

8
@ @ Vector of minimum increments such that a node
5 ; X uses a new path, not through n, to reach d.
J_ AY(x)[i] = C'(x.d) — C(x, },d)

13T

_ 183—(2+14+1+1) (8
® 1 oAg(e)_(13—(2+1+1+1+8+6))_(76)

ZT ® A3(h= (1155:137) - (122>
@(1—@ ° 2%g) (16—2)

16 — 16

18/27

Node shut
[]

Towards Multi-Dimensional Increments

@ -~ @ Vector of minimum increments such that a node

o X uses a new path, not through n, to reach d.

<ﬂ@ Ag(x)[il = C'(x,d) — C(x, I;,d)
® 0 Aje) = (13 71?21(12 il . 1 i;)+ 6)) = (fe)

® a3 = (1155:137) - (122>

@(—@ @ A3(g) = (1166—_126> - (104)

18/27

Node shut
[]

Towards Multi-Dimensional Increments

@ -~ @ Vector of minimum increments such that a node

o X uses a new path, not through n, to reach d.

<ﬂ@ Al = C'(x,d) = C(x, |, d)

© o atto- (1 LI) - (5)~)
@ AY(f) = (1155:137) = (122> ~ (102)
@(_@ @ A3(9) = (1166—_126> - (104)

Negative values denote the absence of constraint on a link.)

18/27

Node shut
[]

Modeling Loops as Vectorial Constraints

Constraint ¢ associated to a given a loop L.

¢:= (¢ := min(A(x})), € := max(A(x)))

19/27

Node shut
[]

Modeling Loops as Vectorial Constraints

@;L;zt@] (d, c)

8
Constraint ¢ associated to a given a loop L. J &= <0)

¢ = (¢ = min(A(x), & := max(A(x)))

19/27

Node shut
[]

Modeling Loops as Vectorial Constraints

121

OOk
>
nNw
=
>
1
o
S
N———
)

o]
ﬂh 23(9) = (0) i
2]

—©
-~
Lo

Constraint ¢ associated to a given a loop L.

¢:= (¢ := min(A(x})), € := max(A(x)))

6 8 10 12 14 16 18
8 _ 12
Q1 = 0 y C1 = 0

19/27

Node shut
[]

Modeling Loops as Vectorial Constraints

121

OOk
>
nNw
=
>
1
o
S
N———
)

o]
ﬂh 23(9) = (104) i
2

?@ 3 (d, <)

8 _ 12
Constraint ¢ associated to a given a loop L. &= <0) O = (0)

¢:= (¢ := min(A(x})), € := max(A(x)))

Node shut
L]

Modeling Loops as Vectorial Constraints (2)

o-o
@(_ 12]

—0)] (d)

20/27

Node shut
L]

Modeling Loops as Vectorial Constraints (2)

20/27

Node shut
L]

Modeling Loops as Vectorial Constraints (2)

0 2 4 6 8 10 12 14 16 18

20/27

Node shut
L]

Modeling Loops as Vectorial Constraints (2)

o-o
@(_ A3(f) = (g) 12

0 2 4 6 8 10 12 14 16 18

20/27

Node shut
L]

Modeling Loops as Vectorial Constraints (2)

o-o
@(_ A3(f) = (g) 12

—()] (d)

-0

20/27

Node shut
[]

Modeling Loops as Vectorial Constraints (3)

21/27

Node shut
[]

Modeling Loops as Vectorial Constraints (3)

21/27

Node shut
L]

Defining Safe Weight Increment Sequences

A weight sequence s avoids a loop L if and only if s contains
at least one vector meeting the corresponding constraint. J

22/27

Node shut
L]

Defining Safe Weight Increment Sequences

Forward search: (d,b) 4

A weight sequence s avoids a loop L if and only if s contains
at least one vector meeting the corresponding constraint. J

22/27

Node shut
L]

Defining Safe Weight Increment Sequences

Forward search: (d,b) 4

— Loop free transition bound

A weight sequence s avoids a loop L if and only if s contains
at least one vector meeting the corresponding constraint. J

22/27

Node shut
L]

Defining Safe Weight Increment Sequences

Forward search: (d,b) 4
Qcc050 00,052

— Loop free transition bound

A weight sequence s avoids a loop L if and only if s contains
at least one vector meeting the corresponding constraint. J

22/27

Node shut
L]

Defining Safe Weight Increment Sequences

Forward search: (d,b) 4
184
Q ¢, ¢4, s (greedy)

16+

— Loop free transition bound

A weight sequence s avoids a loop L if and only if s contains
at least one vector meeting the corresponding constraint. J

22/27

Node shut
L]

Defining Safe Weight Increment Sequences

Forward search: (d,b) 4
184
Q ¢, ¢4, s (greedy)

16+

— Loop free transition bound

A weight sequence s avoids a loop L if and only if s contains
at least one vector meeting the corresponding constraint.

22/27

Node shut
L]

Defining Safe Weight Increment Sequences

Forward search: (d,b) 4

184
Q ¢, ¢, o5 (greedy) o]
Q ¢ 144

— Loop free transition bound

A weight sequence s avoids a loop L if and only if s contains
at least one vector meeting the corresponding constraint.

22/27

Node shut
L]

Defining Safe Weight Increment Sequences

Forward search: (d,b)
@ ¢, ¢, cs (greedy) 1:
Q ¢ 149
(%) Co 12]

— Loop free transition bound

A weight sequence s avoids a loop L if and only if s contains
at least one vector meeting the corresponding constraint. J

22/27

Node shut
L]

Defining Safe Weight Increment Sequences

Forward search: (d,b)
@ ¢, ¢, cs (greedy) 1:
Q ¢ 149
(%) Co 125

10:

— Loop free transition bound

A weight sequence s avoids a loop L if and only if s contains
at least one vector meeting the corresponding constraint. J

22/27

Node shut
L]

Defining Safe Weight Increment Sequences

Forward search: (d,b) 4 /
184
Q ¢, ¢, o5 (greedy) o]
o G 141
Q Co 121
10:
Backward search: 8
N
4]
N
1 (d,c)

— Loop free transition bound

A weight sequence s avoids a loop L if and only if s contains
at least one vector meeting the corresponding constraint. J

22/27

Node shut
L]

Defining Safe Weight Increment Sequences

Forward search: (d,b) 4 /
184
Q ¢, ¢, o5 (greedy) o]
o G 141
Q Co 121
10:
Backward search: 8
N
4]
N
1 (d,c)

— Loop free transition bound

A weight sequence s avoids a loop L if and only if s contains
at least one vector meeting the corresponding constraint. J

22/27

Node shut
L]

Defining Safe Weight Increment Sequences

Forward search: (d,b) 4
184
Q ¢, ¢4, cs (greedy) o]
e G 144
Q Co 124
104
Backward search: 8
Q 05 5]
44
24
. (d, o)

— Loop free transition bound

A weight sequence s avoids a loop L if and only if s contains
at least one vector meeting the corresponding constraint. J

22/27

Node shut
L]

Defining Safe Weight Increment Sequences

Forward search: (d,b) 4
184
Q ¢, ¢, o5 (greedy) o]
Q ¢ 144
Q Co 124
104
Backward search: 8
Q 05 5]
44
24
. (d, o)

— Loop free transition bound

A weight sequence s avoids a loop L if and only if s contains
at least one vector meeting the corresponding constraint.

22/27

Node shut
L]

Defining Safe Weight Increment Sequences

Forward search: (d, b) 4
@ o, ¢, s (greedy)]
Q ¢ 14
Q Co 12:
104
Backward search: a
Q 005 6 /
Q ¢, ‘]
] ? (d.)

— Loop free transition bound

A weight sequence s avoids a loop L if and only if s contains
at least one vector meeting the corresponding constraint. ’

22/27

Node shut
L]

Defining Safe Weight Increment Sequences

Forward search:

Q ¢, ¢, cs (greedy)
Q ¢

Qo

Backward search:
Q c.cy 05
o C1,

> Deterministic process

(d, b)
184

16+

— Loop free transition bound

at least one vector meeting the corresponding constraint.

A weight sequence s avoids a loop L if and only if s contains J

22/27

Node shut
[]

Greedy backward algorithm (GBA)

Algorithm

@ For each loop L, add the corresponding constraint ¢ to CS.

© Add to the sequence S a greedy vector gv such that:
vie [1,]gvl], gvlil = MAX (¢;[i], li], - - - c,[i]) + 1

© Remove from CS all constraints met by gv.

Repeat steps 2 and 3 until there is no more constraints in CS.

23/27

Node shut
[]

Greedy backward algorithm (GBA)

Algorithm

@ For each loop L, add the corresponding constraint ¢ to CS.

© Add to the sequence S a greedy vector gv such that:
vie [1,]gvl], gvlil = MAX (¢;[i], li], - - - c,[i]) + 1

© Remove from CS all constraints met by gv.

Repeat steps 2 and 3 until there is no more constraints in CS.

Given a set of loop-constraints, GBA computes a minimal sequence
of intermediate increments preventing convergence loops.

23/27

Node shut
L]

Sequence Lengths on a Large ISP Network

100

30r M Uniform incr. e GBA-CDF
28 @@ Link-by-link incr. e °

e e e e
CDF (%)

Average length increas

N

ON P OOVOONDDOO®O
—

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14+
Length of the minimal sequence (GBA)

e 90% of the nodes requiring up to 3 intermediate steps
e Link-by-link sequences more than 200% longer

24/27

Conclusion

Q Conclusion

25/27

Conclusion
[]

Conclusion

@ Link shut problem

> Minimal solution
> Low time complexity

@ Node shut problem

> Minimal solution
> Reasonable time complexity
> Avoid flapping

26/27

Conclusion
[]

Conclusion

@ Link shut problem

Minimal solution
> Low time complexity

@ Node shut problem

> Minimal solution
> Reasonable time complexity
> Avoid flapping

26/27

Conclusion
[]

Conclusion

@ Link shut problem

Minimal solution
Low time complexity (polynomial)

@ Node shut problem

> Minimal solution
> Reasonable time complexity
> Avoid flapping

26/27

Conclusion
[]

Conclusion

Link shut problem

Minimal solution
Low time complexity (polynomial)

@ Node shut problem

> Minimal solution
> Reasonable time complexity
> Avoid flapping

26/27

Conclusion
[]

Conclusion

Link shut problem

Minimal solution
Low time complexity (polynomial)

@ Node shut problem

Minimal solution
> Reasonable time complexity
> Avoid flapping

26/27

Conclusion
[]

Conclusion

Link shut problem

Minimal solution
Low time complexity (polynomial)

@ Node shut problem

Minimal solution
Reasonable time complexity (polynomial)
> Avoid flapping

26/27

Conclusion
[]

Conclusion

Link shut problem

Minimal solution
Low time complexity (polynomial)

@ Node shut problem

Minimal solution
Reasonable time complexity (polynomial)
? Avoid flapping

> Improve handling of flapping loops

26/27

Conclusion
L]

What next?

@ Theoretical extensions

@ Interactions with BGP and other routing protocols
o Extension to multicast communications
@ Weight modifications on multiple independent links

@ Experimental evaluations

@ Implementation and emulation with Quagga
@ Measurements on real networks (RENATER)

27127

Thank you for your attention. |

Appendix

e Appendix

28/27

Appendix
.

Transient loop induced by route flapping

—» RSPDAG;(4) —» RSPDAG,(4)

Intermediate routing state towards 4 Intermediate routing state towards 4
considering the first vector considering the second vector

transient flapping edge (on 0)
——

29/27

Appendix
.

Global result table

#nodes / Uniform Std GBA
Topology #edges §=0 [S[<5 | max | [S[<5 | max
Abilene 11/28 36.4 % 100 % 3 100 % 3
GEANT 22/72 63.6 % 100 % 5 100 % 3
ISP1 25/55 69.2 % 100 % 4 100 % 4
ISP2 55/195 81.5% | 94.4% 7 100 % 3
ISP3 110/340 | 59.1% | 81.8% 21 90.9 % 10
ISP4 140/410 | 67.4% | 85.8% 21 92.9 % 10
ISP5 210/785 | 56.7% | 74.8 % 63 82.9 % 33
ISP6 [1170/7240| 84.2% | 921 % 147 93.2 % 57

30/27

Appendix
.

GBA theory

A weight sequence s avoids a loop
L if and only if all pairs of succes-
sive vectors of s form a safe tran-
sition with respect to the constraint
corresponding to L.

An always increasing weight se-
quence s avoids a loop L if and only
if s contains at least one vector
meeting the constraint correspond-
ing to L.

At each iteration, GBA computes
a vector v that meets at least one
constraint not met before.

Problem

Constraint Minimal Meeting Prob-
lem (CMP): Given a set cs =
(¢, 8), - - - . (€, En)} Of loop-
constraints, compute a minimal
weight increment sequence which
contains no unsafe transition for
any constraint in cs.

Theorem

Given a CMP instance |, GBA com-
putes sequences that prevent con-
vergence loops.

Lemma

Consider a CMP instance I. Let
s = (v4...vp) be any se-
quence solving I, and let g =
(91 - - - 9m) be the sequence com-
puted by GBA on |, with possibly
n # m. Then, the last respective
vectors verify vn > gm-

Consider a CMP instance I. Let
s = (vy...vp) be any se-
quence solving I, and let g =
(91 - - . 9m) be the sequence com-
puted by GBA on I, with possibly
n # m. Then, all the constraints
met by vp (and possibly more) are
also met by gm.

The GBA algorithm finds a minimal
sequence for any CMP instance I.

GBA terminates in a number of
main loop iterations which is poly-
nomial with respect to the number
of routers in the network.

31/27

	Introduction
	Transient loops
	Link shut
	Node shut
	Conclusion
	Appendix

