Introduction	Transient loops	Link shut	Node shut	Conclusion

Graceful Operations in Link-State Routing Networks

<u>Francois CLAD</u>¹, Pascal MERINDOL¹, Jean-Jacques PANSIOT¹, Stefano VISSICCHIO² and Pierre FRANCOIS³

¹UDS (France), ²UCL (Belgium), ³Cisco

June 12th, 2013 Research unit in networking seminar

Introduction	Transient loops	Link shut	Node shut	Conclusion

2 Transient loops

3 Link shut

Introduction •	Transient loops	Link shut	Node shut	Conclusion
Some cor	ntext			

- Routing in ISP networks (intra-domain)
 - Link-state protocols: OSPF, IS-IS
- Frequent topological changes
 - Maintenance operations on links or nodes
 - Traffic engineering (weight modifications)
- ... and as many convergence periods
 - Transiently inconsistent state
 - Possible traffic disruption

- Routing in ISP networks (intra-domain)
 - Link-state protocols: OSPF, IS-IS
- Frequent topological changes
 - Maintenance operations on links or nodes
 - Traffic engineering (weight modifications)
- ... and as many convergence periods
 - Transiently inconsistent state
 - Possible traffic disruption

Introduction	Transient loops	Link shut	Node shut	Conclusion

3 Link shut

Routers' update order is **not controlled**! (depends on *LSA flooding* and *RIB/FIB update* times)

Example:

Initially, both a and b reach d through a;

Routes towards d:

Routers' update order is **not controlled**! (depends on *LSA flooding* and *RIB/FIB update* times)

Example:

- Initially, both a and b reach d through a;
- A change occur on the network; Path through b more interesting, even for a;

Routes towards d:

 $\begin{array}{l} \mbox{Old:} \mbox{P_1} <<\mbox{P_2} \\ \mbox{New:} \mbox{P_1'} >>\mbox{P_2'} \end{array}$

How do transient loops appear?

Routers' update order is **not controlled**! (depends on *LSA flooding* and *RIB/FIB update* times)

Example:

- Initially, both a and b reach d through a;
- A change occur on the network; Path through b more interesting, even for a;
- If a updates first and starts sending data towards d through b, while b still uses a;

Routes towards *d*:

Old: $P_1 << P_2$ New: $P'_1 >> P'_2$

How do transient loops appear?

Routers' update order is **not controlled**! (depends on *LSA flooding* and *RIB/FIB update* times)

Example:

- Initially, both a and b reach d through a;
- A change occur on the network; Path through b more interesting, even for a;
- If a updates first and starts sending data towards d through b, while b still uses a;
- A transient loop appears on link (*a*, *b*);

Old: $P_1 << P_2$ New: $P'_1 >> P'_2$

How do transient loops appear?

Routers' update order is **not controlled**! (depends on *LSA flooding* and *RIB/FIB update* times)

Example:

- Initially, both a and b reach d through a;
- A change occur on the network; Path through b more interesting, even for a;
- If a updates first and starts sending data towards d through b, while b still uses a;
- A transient loop appears on link (*a*, *b*);
 - Increased latency;
 - Packet losses.

Old: $P_1 << P_2$ New: $P'_1 >> P'_2$

Introduction o	Transient loops ○●○○○	Link shut	Node shut	Conclusion
How to c	letect them?			

For a given destination (e.g. *d*):

Compute routes before and after the change;

Introduction o	Transient loops ○●○○○	Link shut	Node shut	Conclusion
How to c	letect them?			

For a given destination (e.g. *d*):

- Compute routes before and after the change;
- Merge these two directed acyclic graphs (DAG);

Introduction o	Transient loops ○●○○○	Link shut 00000	Node shut	Conclusion
How to d	detect them?			

For a given destination (e.g. *d*):

- Compute routes before and after the change;
- Merge these two directed acyclic graphs (DAG);
- Perform a cycle detection on the resulting graph.

• Initially, both *a* and *b* reach *d* through *a*;

 $P_1 + w(b, a) < P_2$

How to	provent them?			
	00000			
Introduction	Transient loops	Link shut	Node shut	Conclusion

- Initially, both a and b reach d through a;
- The same change occurs;

How to prov	opt thom?			
0		00000	00000000	00
Introduction	Transignt loops	Link chut	Nodo shut	Conclusion

- Initially, both *a* and *b* reach *d* through *a*;
- The same change occurs;
- Yet this time b updates first;

0000	0000000				
	nk snut 2000	nk shut Node shut			

- Initially, both *a* and *b* reach *d* through *a*;
- The same change occurs;
- Yet this time b updates first;
- Then a, and no loop appears.

How to preve	ont thom?			
Introduction o	Transient loops	Link shut ooooo	Node shut	Conclusion

- Initially, both a and b reach d through a;
- The same change occurs;
- Yet this time b updates first;
- Then a, and no loop appears.

One goal, several approaches.

°	00000	00000	0000000	00
Prodressive	eupdate			

Basic idea

Split up the change into a sequence loop free updates.

Objectives

Compute a sequence of intermediate updates, such that:

- No transient loop between subsequent updates;
- Each intermediate update prevents at least one cycle.

Challenge

Minimal operational impact (sequences of minimal length)

Introduction O	Transient loops ○○○○●	Link shut 00000	Node shut	Conclusion

Illustration: path increment sequence

Introduction	Transient loops	Link shut	Node shut	Conclusion
○	○○○○●	00000		00
Illustration	n: path increm	nent sequer	nce	

• Initially, *a*, *b* and *c* reach *d* through node *a*.

Introduction o	Transient loops ○○○○●	Link shut	Node shut	Conclusion 00
Illustratio	n: path increm	nent sequer	nce	

- Initially, *a*, *b* and *c* reach *d* through node *a*.
- If a change occur on path P(a, d) increasing its cost to 50...

Illustratio	on: nath incren	nent seque	nce	
Introduction o	Transient loops ○○○○●	Link shut	Node shut	Conclusion

- Initially, *a*, *b* and *c* reach *d* through node *a*.
- If a change occur on path P(a, d) increasing its cost to 50, all three nodes will go through c instead ...

Illustrati	ion: nath increm	nent seque	nce	
Introduction O	Transient loops	Link shut	Node shut	Conclusion

- Initially, *a*, *b* and *c* reach *d* through node *a*.
- If a change occur on path P(a, d) increasing its cost to 50, all three nodes will go through c instead and transient loops may appear.

Illustrati	ion: nath increm	nent seque	nce	
Introduction O	Transient loops	Link shut	Node shut	Conclusion

- Initially, *a*, *b* and *c* reach *d* through node *a*.
- If a change occur on path P(a, d) increasing its cost to 50, all three nodes will go through c instead and transient loops may appear.

With incremental updates:

Illustrati	ion: nath increm	nent seque	nce	
Introduction O	Transient loops	Link shut	Node shut	Conclusion

- Initially, *a*, *b* and *c* reach *d* through node *a*.
- If a change occur on path P(a, d) increasing its cost to 50, all three nodes will go through c instead and transient loops may appear.

With incremental updates:

Node c could update first;

Illustratio	nu noth inorar	nont oggi		
	00000			
Introduction	Transient loops	Link shut	Node shut	Conclusion

Illustration: path increment sequence

- Initially, *a*, *b* and *c* reach *d* through node *a*.
- If a change occur on path P(a, d) increasing its cost to 50, all three nodes will go through c instead and transient loops may appear.

With incremental updates:

- Node *c* could update first;
- Then b,

Illustrati	ana math inaran			
	00000			
Introduction	Transient loops	Link shut	Node shut	Conclusion

Illustration: path increment sequence

- Initially, *a*, *b* and *c* reach *d* through node *a*.
- If a change occur on path P(a, d) increasing its cost to 50, all three nodes will go through c instead and transient loops may appear.

With incremental updates:

- Node *c* could update first;
- Then b, and a;

Illustrati	ana math inaran			
	00000			
Introduction	Transient loops	Link shut	Node shut	Conclusion

illustration: path increment sequence

- Initially, *a*, *b* and *c* reach *d* through node *a*.
- If a change occur on path P(a, d) increasing its cost to 50, all three nodes will go through c instead and transient loops may appear.

With incremental updates:

- Node c could update first;
- Then *b*, and *a*;

So that the transition to 50 will be loop free.

Introduction	Transient loops	Link shut	Node shut	Conclusion

0 00000 00000		
Introduction Transient loops Link shut	Node shut	Conclusion

Algorithmic steps

- Extract destination oriented increment sequences;
- Merge them into a global increment sequence;
- Prune useless values to build a minimal sequence.

¹The same algorithms may be used for any other kind of modification on a single link (addition, arbitrary weight increment or decrement).

• Retrieve distances from each affected node to the destination

- Retrieve distances from each affected node to the destination
- Compute the difference (Δ) between new and old distances

•
$$\Delta(b) = 11 - 5 = 6$$

•
$$\Delta(c) = 9 - 7 = 2$$

- Retrieve distances from each *affected* node to the destination
- Compute the difference (Δ) between new and old distances

•
$$\Delta(a) = 14 - 2 = 12$$

•
$$\Delta(b) = 11 - 5 = 6$$

•
$$\Delta(c) = 9 - 7 = 2$$

Incrementing the weight of link (a, d) by one of these Δ values would put the corresponding node in an **ECMP transient state**.

Destination oriented sequences: ECMP state

In an **ECMP state**, a node uses both its old and new routes towards the destination.

• Δ sequence: $S_{\Delta}(d) = \{2, 6, 12\}$

▷ First values such that the nodes use their new path(s)
Introductio	on	Transient loo	ps	Link shut ○○●○○	Node shut	Conclusion	

In an **ECMP state**, a node uses both its old and new routes towards the destination.

• Δ sequence: $S_{\Delta}(d) = \{2, 6, 12\}$

▷ First values such that the nodes use their new path(s)

Does not prevent transient loops

In an **ECMP state**, a node uses both its old and new routes towards the destination.

• Δ sequence: $S_{\Delta}(d) = \{2, 6, 12\}$

▷ First values such that the nodes use their new path(s)

Does not prevent transient loops

• Increment seq. (Δ + 1): $S_i(d) = \{3, 7, 13\}$

▷ First values such that the nodes use **only** their new path(s)

In an **ECMP state**, a node uses both its old and new routes towards the destination.

• Δ sequence: $S_{\Delta}(d) = \{2, 6, 12\}$

▷ First values such that the nodes use their new path(s)

Does not prevent transient loops

• Increment seq. (Δ + 1): $S_i(d) = \{3, 7, 13\}$

▷ First values such that the nodes use **only** their new path(s)

• Weight seq. $(\Delta + 1 + w(a, d)): S_m(d) = \{5, 9, 15\}$

In an **ECMP state**, a node uses both its old and new routes towards the destination.

• Δ sequence: $S_{\Delta}(d) = \{2, 6, 12\}$

First values such that the nodes use their new path(s)

Does not prevent transient loops

• Increment seq. $(\Delta + 1): S_i(d) = \{3, 7, 13\}$ relative to w(a, d)

 \triangleright First values such that the nodes use **only** their new path(s)

• Weight seq. $(\Delta + 1 + w(a, d))$: $S_m(d) = \{5, 9, 15\}$ absolute

Introduction	Transient loops	Link shut	Node shut	Conclusion
		00000		

Destination oriented sequences: another destination

Current paths

New paths

Destination oriented sequences: another destination

● Extract △ values

- $\Delta(a) = 13 3 = 10$
- $\Delta(b) = 10 6 = 4$
- $\Delta(c) = 8 8 = 0$

Destination oriented sequences: another destination

● Extract △ values

- $\Delta(a) = 13 3 = 10$
- $\Delta(b) = 10 6 = 4$
- $\Delta(c) = 8 8 = 0$

• Compute an increment sequence: $S_i(e) = \{1, 5, 11\}$

Introduction	Transient loops	Link shut	Node shut	Conclusion
		00000		

Global increment sequences

- Merge destination oriented sequences
 - Prevent transient loops for all destinations
 - May contain unnecessary values

Global increment sequences

- Merge destination oriented sequences
 - Prevent transient loops for all destinations
 - May contain unnecessary values
- Prune redundant values
 - > Greedy algorithm looking for possible loops at each step
 - > Ensure the minimality in terms of sequence length

Global increment sequences

- Merge destination oriented sequences
 - Prevent transient loops for all destinations
 - May contain unnecessary values
- Prune redundant values
 - > Greedy algorithm looking for possible loops at each step
 - > Ensure the minimality in terms of sequence length
 - Multiple sequences of minimal length

Introduction	Transient loops	Link shut	Node shut	Conclusion

2 Transient loops

3 Link shut

Introduction o	Transient loops	Link shut	Node shut ●○○○○○○○	Conclusion
The Nod	e Shutdown P	rohlem		

Introduction	Transient loops	Link shut	Node shut	Conclusion
			0000000	

- Simple solution: shut down each link one by one
 - Number of intermediate steps proportional to node degree

Introduction	Transient loops	Link shut	Node shut	Conclusion
			0000000	

- Simple solution: shut down each link one by one
 - Number of intermediate steps proportional to node degree

Introduction	Transient loops	Link shut	Node shut	Conclusion
			0000000	

- Simple solution: shut down each link one by one
 - Number of intermediate steps proportional to node degree

Introduction	Transient loops	Link shut	Node shut	Conclusion
			0000000	

- Simple solution: shut down each link one by one
 - Number of intermediate steps proportional to node degree

Introduction	Transient loops	Link shut	Node shut	Conclusion
			0000000	

- Simple solution: shut down each link one by one
 - Number of intermediate steps proportional to node degree

$+x_1, y_1, z_1$ $+x_2, y_2, z_2$	2
$+x_4, y_4, z_4$ $+x_3, y_3, z_3$	

Introduction	Transient loops	Link shut	Node shut	Conclusion
			0000000	

- Simple solution: shut down each link one by one
 - Number of intermediate steps proportional to node degree

Introduction	Transient loops	Link shut	Node shut	Conclusion
			0000000	

- Simple solution: shut down each link one by one
 - Number of intermediate steps proportional to node degree
- Better solution: benefit from existing OSPF / IS-IS features
 - Simultaneous weight modifications

Introduction Tra	ansient loops	Link shut	Node shut	Conclusion
			0000000	

- Simple solution: shut down each link one by one
 - Number of intermediate steps proportional to node degree
- Better solution: benefit from existing OSPF / IS-IS features
 - Simultaneous weight modifications

Introduction Tra	ansient loops	Link shut	Node shut	Conclusion
			0000000	

- Simple solution: shut down each link one by one
 - Number of intermediate steps proportional to node degree
- Better solution: benefit from existing OSPF / IS-IS features
 - Simultaneous weight modifications

Introduction Tra	ansient loops	Link shut	Node shut	Conclusion
			0000000	

- Simple solution: shut down each link one by one
 - Number of intermediate steps proportional to node degree
- Better solution: benefit from existing OSPF / IS-IS features
 - Simultaneous weight modifications

Introduction Tra	ansient loops	Link shut	Node shut	Conclusion
			0000000	

- Simple solution: shut down each link one by one
 - Number of intermediate steps proportional to node degree
- Better solution: benefit from existing OSPF / IS-IS features
 - Simultaneous weight modifications

$$\Delta_d^n(x)[i] = C'(x,d) - C(x,l_i,d)$$

$$\Delta_d^n(x)[i] = C'(x,d) - C(x,l_i,d)$$

$$\Delta_d^n(x)[i] = C'(x,d) - C(x,l_i,d)$$

$$\Delta_d^n(x)[i] = C'(x,d) - C(x,l_i,d)$$

•
$$\Delta_2^3(e) = \begin{pmatrix} 13 - (2 + 1 + 1 + 1) \\ \end{pmatrix}$$

$$\Delta_d^n(x)[i] = C'(x,d) - C(x,l_i,d)$$

•
$$\Delta_2^3(e) = \begin{pmatrix} 13 - (2 + 1 + 1 + 1) \\ 13 - (2 + 1 + 1 + 1 + 8 + 6) \end{pmatrix}$$

$$\Delta_d^n(x)[i] = C'(x,d) - C(x,l_i,d)$$

•
$$\Delta_2^3(e) = \begin{pmatrix} 13 - (2+1+1+1) \\ 13 - (2+1+1+1+8+6) \end{pmatrix} = \begin{pmatrix} 8 \\ -6 \end{pmatrix}$$

$$\Delta_d^n(x)[i] = C'(x,d) - C(x,l_i,d)$$

•
$$\Delta_2^3(e) = \begin{pmatrix} 13 - (2 + 1 + 1 + 1) \\ 13 - (2 + 1 + 1 + 1 + 8 + 6) \end{pmatrix} = \begin{pmatrix} 8 \\ -6 \end{pmatrix}$$

• $\Delta_2^3(f) = \begin{pmatrix} 15 - 3 \\ \end{pmatrix}$

$$\Delta_d^n(x)[i] = C'(x,d) - C(x,l_i,d)$$

•
$$\Delta_2^3(e) = \begin{pmatrix} 13 - (2 + 1 + 1 + 1) \\ 13 - (2 + 1 + 1 + 1 + 8 + 6) \end{pmatrix} = \begin{pmatrix} 8 \\ -6 \end{pmatrix}$$

• $\Delta_2^3(f) = \begin{pmatrix} 15 - 3 \\ 15 - 17 \end{pmatrix}$

$$\Delta_d^n(x)[i] = C'(x,d) - C(x,l_i,d)$$

•
$$\Delta_2^3(e) = \begin{pmatrix} 13 - (2 + 1 + 1 + 1) \\ 13 - (2 + 1 + 1 + 1 + 8 + 6) \end{pmatrix} = \begin{pmatrix} 8 \\ -6 \end{pmatrix}$$

• $\Delta_2^3(f) = \begin{pmatrix} 15 - 3 \\ 15 - 17 \end{pmatrix} = \begin{pmatrix} 12 \\ -2 \end{pmatrix}$

$$\Delta_d^n(x)[i] = C'(x,d) - C(x,l_i,d)$$

•
$$\Delta_2^3(e) = \begin{pmatrix} 13 - (2 + 1 + 1 + 1) \\ 13 - (2 + 1 + 1 + 1 + 1 + 8 + 6) \end{pmatrix} = \begin{pmatrix} 8 \\ -6 \end{pmatrix}$$

• $\Delta_2^3(f) = \begin{pmatrix} 15 - 3 \\ 15 - 17 \end{pmatrix} = \begin{pmatrix} 12 \\ -2 \end{pmatrix}$
• $\Delta_2^3(g) = \begin{pmatrix} 16 - 2 \\ 16 - 16 \end{pmatrix}$

$$\Delta_d^n(x)[i] = C'(x,d) - C(x,l_i,d)$$

•
$$\Delta_2^3(e) = \begin{pmatrix} 13 - (2 + 1 + 1 + 1) \\ 13 - (2 + 1 + 1 + 1 + 1 + 8 + 6) \end{pmatrix} = \begin{pmatrix} 8 \\ -6 \end{pmatrix}$$

• $\Delta_2^3(f) = \begin{pmatrix} 15 - 3 \\ 15 - 17 \end{pmatrix} = \begin{pmatrix} 12 \\ -2 \end{pmatrix}$
• $\Delta_2^3(g) = \begin{pmatrix} 16 - 2 \\ 16 - 16 \end{pmatrix} = \begin{pmatrix} 14 \\ 0 \end{pmatrix}$

Towards Multi-Dimensional Increments

Vector of minimum increments such that a node x uses a new path, not through n, to reach d.

$$\Delta_d^n(x)[i] = C'(x,d) - C(x,l_i,d)$$

•
$$\Delta_2^3(e) = \begin{pmatrix} 13 - (2 + 1 + 1 + 1) \\ 13 - (2 + 1 + 1 + 1 + 8 + 6) \end{pmatrix} = \begin{pmatrix} 8 \\ -6 \end{pmatrix} \sim \begin{pmatrix} 8 \\ 0 \end{pmatrix}$$

• $\Delta_2^3(f) = \begin{pmatrix} 15 - 3 \\ 15 - 17 \end{pmatrix} = \begin{pmatrix} 12 \\ -2 \end{pmatrix} \sim \begin{pmatrix} 12 \\ 0 \end{pmatrix}$
• $\Delta_2^3(g) = \begin{pmatrix} 16 - 2 \\ 16 - 16 \end{pmatrix} = \begin{pmatrix} 14 \\ 0 \end{pmatrix}$

Negative values denote the absence of constraint on a link.

Constraint c associated to a given a loop L.

$$c := (\underline{c} := \min_{\forall x \in L} (\Delta(x)), \overline{c} := \max_{\forall x \in L} (\Delta(x)))$$

$$\underline{\underline{c}}_3 = \begin{pmatrix} 5 \\ 3 \end{pmatrix}$$
 , $\overline{\underline{c}}_3 = \begin{pmatrix} 7 \\ 5 \end{pmatrix}$

$$\boldsymbol{c_4} = \left(\begin{pmatrix} 1\\8 \end{pmatrix}, \begin{pmatrix} 4\\11 \end{pmatrix} \right)$$

$$c_{4} = \left(\begin{pmatrix} 1 \\ 8 \end{pmatrix}, \begin{pmatrix} 4 \\ 11 \end{pmatrix} \right)$$
$$c_{5} = \left(\begin{pmatrix} 2 \\ 9 \end{pmatrix}, \begin{pmatrix} 5 \\ 12 \end{pmatrix} \right)$$

Forward search:

Forward search:

0

10 12

8

Loop free transition bound

14

16

A weight sequence s avoids a loop L if and only if s contains at least one vector meeting the corresponding constraint.

A weight sequence s avoids a loop L if and only if s contains at least one vector meeting the corresponding constraint.

Introduction o	Transient loops	Link shut ooooo	Node shut ○○○○○○●○	Conclusion

Greedy backward algorithm (GBA)

Algorithm

- For each loop *L*, add the corresponding constraint *c* to *CS*.
- Add to the sequence S a greedy vector gv such that:

 $\forall i \in [1, |gv|], gv[i] = MAX (\underline{c}_1[i], \underline{c}_2[i], \dots \underline{c}_n[i]) + 1$

Remove from CS all constraints met by gv.

Repeat steps 2 and 3 until there is no more constraints in CS.

Greedy backward algorithm (GBA)

Algorithm

- For each loop *L*, add the corresponding constraint *c* to *CS*.
- Add to the sequence S a greedy vector gv such that:

 $\forall i \in [1, |gv|], gv[i] = MAX (\underline{c}_1[i], \underline{c}_2[i], \dots \underline{c}_n[i]) + 1$

Remove from CS all constraints met by gv.

Repeat steps 2 and 3 until there is no more constraints in CS.

Theorem

Given a set of loop-constraints, GBA computes a minimal sequence of intermediate increments preventing convergence loops.

Sequence Lengths on a Large ISP Network

- 90% of the nodes requiring up to 3 intermediate steps
- Link-by-link sequences more than 200% longer

Introduction	Transient loops	Link shut	Node shut	Conclusion

2 Transient loops

3 Link shut

Introduction	Transient loops	Link shut	Node shut	Conclusion
o		ooooo	oooooooo	●○
Conclusion				

• Link shut problem

- Minimal solution
- ▷ Low time complexity

- Minimal solution
- Reasonable time complexity
- Avoid flapping

Introduction o	Transient loops	Link shut	Node shut	Conclusion ●○
Conclusion				

• Link shut problem

- Minimal solution
- ▷ Low time complexity

- Minimal solution
- Reasonable time complexity
- Avoid flapping

Introduction	Transient loops	Link shut	Node shut	Conclusion
o		ooooo	oooooooo	●○
Conclusion				

• Link shut problem

- Minimal solution
- ✓ Low time complexity (polynomial)

- Minimal solution
- Reasonable time complexity
- Avoid flapping

Introduction o	Transient loops	Link shut	Node shut	Conclusion ●○
Conclusion				

✓ Link shut problem

- Minimal solution
- ✓ Low time complexity (polynomial)

- Minimal solution
- Reasonable time complexity
- Avoid flapping

Introduction o	Transient loops	Link shut	Node shut	Conclusion ●○
Conclusion				

✓ Link shut problem

- Minimal solution
- ✓ Low time complexity (polynomial)

- Minimal solution
- Reasonable time complexity
- Avoid flapping
| Introduction
O | Transient loops | Link shut | Node shut | Conclusion
●○ |
|-------------------|-----------------|-----------|-----------|------------------|
| Conclusion | | | | |

✓ Link shut problem

- Minimal solution
- ✓ Low time complexity (polynomial)

Node shut problem

- Minimal solution
- Reasonable time complexity (polynomial)
- Avoid flapping

Introduction O	Transient loops	Link shut	Node shut	Conclusion ●○
Conclusion				

✓ Link shut problem

- Minimal solution
- Low time complexity (polynomial)

Node shut problem

- Minimal solution
- Reasonable time complexity (polynomial)
 - ? Avoid flapping
 - Improve handling of flapping loops

Introduction O	Transient loops	Link shut	Node shut	Conclusion ○●
What next?				

Theoretical extensions

- Interactions with BGP and other routing protocols
- Extension to multicast communications
- Weight modifications on multiple independent links

Experimental evaluations

- Implementation and emulation with Quagga
- Measurements on real networks (RENATER)

Introduction	Transient loops	Link shut	Node shut	Conclusion

Thank you for your attention.

Transient loop induced by route flapping

 $RSPDAG_{1}(4)$ \rightarrow

Intermediate routing state towards 4 considering the first vector

 $RSPDAG_{2}(4)$

Intermediate routing state towards 4 considering the second vector

Global result table

Topology	#nodes /	S — Ø	Uniform		Std GBA	
	#edges	0 = 0	$ S \leq 5$	max	$ S \leq 5$	max
Abilene	11 / 28	36.4 %	100 %	3	100 %	3
GEANT	22 / 72	63.6 %	100 %	5	100 %	3
ISP1	25 / 55	69.2 %	100 %	4	100 %	4
ISP2	55 / 195	81.5 %	94.4 %	7	100 %	3
ISP3	110 / 340	59.1 %	81.8 %	21	90.9 %	10
ISP4	140 / 410	67.4 %	85.8 %	21	92.9 %	10
ISP5	210 / 785	56.7 %	74.8 %	63	82.9 %	33
ISP6	1170 / 7240	84.2 %	92.1 %	147	93.2 %	57

GBA theory

Theorem

A weight sequence s avoids a loop L if and only if all pairs of successive vectors of s form a safe transition with respect to the constraint corresponding to L.

Theorem

An always increasing weight sequences avoids a loop L if and only if s contains at least one vector meeting the constraint corresponding to L.

Lemma

At each iteration, GBA computes a vector v that meets at least one constraint not met before.

Problem

Constraint Minimal Meeting Problem (CMP): Given a set cs = $\{(\underline{c}_1, \overline{c}_1), \ldots, (\underline{c}_n, \overline{c}_n)\}$ of loopconstraints, compute a minimal weight increment sequence which contains no unsafe transition for any constraint in cs.

Theorem

Given a CMP instance I, GBA computes sequences that prevent convergence loops.

Lemma

Consider a CMP instance I. Let $s = (v_1 \dots v_n)$ be any sequence solving I, and let $g = (g_1 \dots g_m)$ be the sequence computed by GBA on I, with possibly $n \neq m$. Then, the last respective vectors verify $v_n \geq g_m$.

Lemma

Consider a CMP instance I. Let $s = (v_1 \dots v_n)$ be any sequence solving I, and let $g = (g_1 \dots g_m)$ be the sequence computed by GBA on I, with possibly $n \neq m$. Then, all the constraints met by v_n (and possibly more) are also met by g_m .

Theorem

The GBA algorithm finds a minimal sequence for any CMP instance I.

Theorem

GBA terminates in a number of main loop iterations which is polynomial with respect to the number of routers in the network.