
Introduction Transient loops Link shut Node shut Conclusion

Graceful Operations in Link-State

Routing Networks

Francois CLAD1, Pascal MERINDOL1, Jean-Jacques PANSIOT1,

Stefano VISSICCHIO2 and Pierre FRANCOIS3

1UDS (France), 2UCL (Belgium), 3Cisco

June 12th, 2013

Research unit in networking seminar

1 / 27

Introduction Transient loops Link shut Node shut Conclusion

1 Introduction

2 Transient loops

3 Link shut

4 Node shut

5 Conclusion

2 / 27

Introduction Transient loops Link shut Node shut Conclusion

Some context

Routing in ISP networks (intra-domain)

Link-state protocols: OSPF, IS-IS

Frequent topological changes

Maintenance operations on links or nodes

Traffic engineering (weight modifications)

. . . and as many convergence periods

Transiently inconsistent state

Possible traffic disruption

3 / 27

Introduction Transient loops Link shut Node shut Conclusion

Some context

Routing in ISP networks (intra-domain)

Link-state protocols: OSPF, IS-IS

Frequent topological changes

Maintenance operations on links or nodes

Traffic engineering (weight modifications)

. . . and as many convergence periods

Transiently inconsistent state

Possible traffic disruption

Detect
change

Propagate
LSPs

Recompute
RIB

Update
FIB

C
o

n
ve

rg
e

n
c
e

p
e

ri
o

d
3 / 27

Introduction Transient loops Link shut Node shut Conclusion

1 Introduction

2 Transient loops

3 Link shut

4 Node shut

5 Conclusion

4 / 27

Introduction Transient loops Link shut Node shut Conclusion

How do transient loops appear?

Routers’ update order is not controlled!
(depends on LSA flooding and RIB/FIB update times)

Example:

Initially, both a and b reach d through a;

d

Routes towards d :

a

b

P1

P2

P1 << P2

5 / 27

Introduction Transient loops Link shut Node shut Conclusion

How do transient loops appear?

Routers’ update order is not controlled!
(depends on LSA flooding and RIB/FIB update times)

Example:

Initially, both a and b reach d through a;

A change occur on the network;

Path through b more interesting, even for a;

d

Routes towards d :

b

P ′
1

P ′
2

Old: P1 << P2

New: P ′
1 >> P ′

2

a

5 / 27

Introduction Transient loops Link shut Node shut Conclusion

How do transient loops appear?

Routers’ update order is not controlled!
(depends on LSA flooding and RIB/FIB update times)

Example:

Initially, both a and b reach d through a;

A change occur on the network;

Path through b more interesting, even for a;

If a updates first and starts sending data

towards d through b, while b still uses a;

d

Routes towards d :

b

P ′
1

P ′
2

Old: P1 << P2

New: P ′
1 >> P ′

2

a

5 / 27

Introduction Transient loops Link shut Node shut Conclusion

How do transient loops appear?

Routers’ update order is not controlled!
(depends on LSA flooding and RIB/FIB update times)

Example:

Initially, both a and b reach d through a;

A change occur on the network;

Path through b more interesting, even for a;

If a updates first and starts sending data

towards d through b, while b still uses a;

A transient loop appears on link (a,b);

d

Routes towards d :

b

P ′
1

P ′
2

Old: P1 << P2

New: P ′
1 >> P ′

2

a

LOOP !

5 / 27

Introduction Transient loops Link shut Node shut Conclusion

How do transient loops appear?

Routers’ update order is not controlled!
(depends on LSA flooding and RIB/FIB update times)

Example:

Initially, both a and b reach d through a;

A change occur on the network;

Path through b more interesting, even for a;

If a updates first and starts sending data

towards d through b, while b still uses a;

A transient loop appears on link (a,b);

✄ Increased latency;

✄ Packet losses.

d

Routes towards d :

b

P ′
1

P ′
2

Old: P1 << P2

New: P ′
1 >> P ′

2

a

LOOP !

5 / 27

Introduction Transient loops Link shut Node shut Conclusion

How to detect them?

For a given destination (e.g. d):

1 Compute routes before and after the change;

Before

a

b

d

After

a

b

d

6 / 27

Introduction Transient loops Link shut Node shut Conclusion

How to detect them?

For a given destination (e.g. d):

1 Compute routes before and after the change;

2 Merge these two directed acyclic graphs (DAG);

Before

a

b

d

Merging

a

b

d

After

a

b

d

6 / 27

Introduction Transient loops Link shut Node shut Conclusion

How to detect them?

For a given destination (e.g. d):

1 Compute routes before and after the change;

2 Merge these two directed acyclic graphs (DAG);

3 Perform a cycle detection on the resulting graph.

Before

a

b

d

Merging

a

b

dLOOP !

After

a

b

d

6 / 27

Introduction Transient loops Link shut Node shut Conclusion

How to prevent them?

Force the routers to update in the right order.

Initially, both a and b reach d through a;

d

a

b

P1

P2

P1 + w(b,a) < P2

7 / 27

Introduction Transient loops Link shut Node shut Conclusion

How to prevent them?

Force the routers to update in the right order.

Initially, both a and b reach d through a;

The same change occurs;
d

P ′
1

P ′
2

Old: P1 + w(b,a) < P2

New: P ′
1 > w(a,b) + P ′

2

b

a

7 / 27

Introduction Transient loops Link shut Node shut Conclusion

How to prevent them?

Force the routers to update in the right order.

Initially, both a and b reach d through a;

The same change occurs;

Yet this time b updates first;
d

P ′
1

P ′
2

Old: P1 + w(b,a) < P2

New: P ′
1 > w(a,b) + P ′

2

b

a

7 / 27

Introduction Transient loops Link shut Node shut Conclusion

How to prevent them?

Force the routers to update in the right order.

Initially, both a and b reach d through a;

The same change occurs;

Yet this time b updates first;

Then a, and no loop appears.

d

P ′
1

P ′
2

Old: P1 + w(b,a) < P2

New: P ′
1 > w(a,b) + P ′

2

b

a

7 / 27

Introduction Transient loops Link shut Node shut Conclusion

How to prevent them?

Force the routers to update in the right order.

Initially, both a and b reach d through a;

The same change occurs;

Yet this time b updates first;

Then a, and no loop appears.

One goal, several approaches.

d

P ′
1

P ′
2

Old: P1 + w(b,a) < P2

New: P ′
1 > w(a,b) + P ′

2

b

a

7 / 27

Introduction Transient loops Link shut Node shut Conclusion

Progressive update

Basic idea

Split up the change into a sequence loop free updates.

Objectives

Compute a sequence of intermediate updates, such that:

No transient loop between subsequent updates;

Each intermediate update prevents at least one cycle.

Challenge

Minimal operational impact (sequences of minimal length)

8 / 27

Introduction Transient loops Link shut Node shut Conclusion

Illustration: path increment sequence

a

b

c

d

3

5

2 9

2

9 / 27

Introduction Transient loops Link shut Node shut Conclusion

Illustration: path increment sequence

Initially, a, b and c reach d through node a.

a

b

c

d

3

5

2 9

2

9 / 27

Introduction Transient loops Link shut Node shut Conclusion

Illustration: path increment sequence

Initially, a, b and c reach d through node a.

If a change occur on path P(a, d) increasing its cost to 50. . .

a

b

c

d

3

5

2 9

✁2 50

9 / 27

Introduction Transient loops Link shut Node shut Conclusion

Illustration: path increment sequence

Initially, a, b and c reach d through node a.

If a change occur on path P(a, d) increasing its cost to 50, all three

nodes will go through c instead . . .

a

b

c

d

3

5

2 9

✁2 50

9 / 27

Introduction Transient loops Link shut Node shut Conclusion

Illustration: path increment sequence

Initially, a, b and c reach d through node a.

If a change occur on path P(a, d) increasing its cost to 50, all three

nodes will go through c instead and transient loops may appear.

a

b

c

d

3

5

2 9

✁2 50
LOOP !

LOOP !

LOOP !

9 / 27

Introduction Transient loops Link shut Node shut Conclusion

Illustration: path increment sequence

Initially, a, b and c reach d through node a.

If a change occur on path P(a, d) increasing its cost to 50, all three

nodes will go through c instead and transient loops may appear.

With incremental updates:

d

3

5

2 9

2
a

b

c

2 50

9 / 27

Introduction Transient loops Link shut Node shut Conclusion

Illustration: path increment sequence

Initially, a, b and c reach d through node a.

If a change occur on path P(a, d) increasing its cost to 50, all three

nodes will go through c instead and transient loops may appear.

With incremental updates:

Node c could update first;
d

3

5

2 9

✁2 5
a

b

c

2 505

9 / 27

Introduction Transient loops Link shut Node shut Conclusion

Illustration: path increment sequence

Initially, a, b and c reach d through node a.

If a change occur on path P(a, d) increasing its cost to 50, all three

nodes will go through c instead and transient loops may appear.

With incremental updates:

Node c could update first;

Then b,
d

3

5

2 9

✁2 ✁5 9
a

b

c

2 505 9

9 / 27

Introduction Transient loops Link shut Node shut Conclusion

Illustration: path increment sequence

Initially, a, b and c reach d through node a.

If a change occur on path P(a, d) increasing its cost to 50, all three

nodes will go through c instead and transient loops may appear.

With incremental updates:

Node c could update first;

Then b, and a;
d

3

5

2 9

✁2 ✁5 ✁9 15
a

b

c

2 505 9 15

9 / 27

Introduction Transient loops Link shut Node shut Conclusion

Illustration: path increment sequence

Initially, a, b and c reach d through node a.

If a change occur on path P(a, d) increasing its cost to 50, all three

nodes will go through c instead and transient loops may appear.

With incremental updates:

Node c could update first;

Then b, and a;

So that the transition to 50 will

be loop free.

d

3

5

2 9

✁2 ✁5 ✁9✚✚15 50
a

b

c

2 505 9 15

9 / 27

Introduction Transient loops Link shut Node shut Conclusion

1 Introduction

2 Transient loops

3 Link shut

4 Node shut

5 Conclusion

10 / 27

Introduction Transient loops Link shut Node shut Conclusion

Case of a link shut (withdrawal)1

Algorithmic steps

1 Extract destination oriented increment sequences;

2 Merge them into a global increment sequence;

3 Prune useless values to build a minimal sequence.

1The same algorithms may be used for any other kind of modification on a

single link (addition, arbitrary weight increment or decrement).

11 / 27

Introduction Transient loops Link shut Node shut Conclusion

Destination oriented sequences: ∆ values

Current paths

a

b

c

d

e

3

5

2
8

2

1

New paths

a

b

c

d

e

3

5

2
8

1

12 / 27

Introduction Transient loops Link shut Node shut Conclusion

Destination oriented sequences: ∆ values

Current paths

a

b

c

d

e

3

5

2
8

2

1

2

5

7

New paths

a

b

c

d

e

3

5

2
8

1

14

11

9

Retrieve distances from each affected node to the destination

12 / 27

Introduction Transient loops Link shut Node shut Conclusion

Destination oriented sequences: ∆ values

Current paths

a

b

c

d

e

3

5

2
8

2

1

2

5

7

New paths

a

b

c

d

e

3

5

2
8

1

14

11

9

Retrieve distances from each affected node to the destination

Compute the difference (∆) between new and old distances

∆(a) = 14 − 2 = 12

∆(b) = 11 − 5 = 6

∆(c) = 9 − 7 = 2

12 / 27

Introduction Transient loops Link shut Node shut Conclusion

Destination oriented sequences: ∆ values

Current paths

a

b

c

d

e

3

5

2
8

2

1

2

5

7

New paths

a

b

c

d

e

3

5

2
8

1

14

11

9

Retrieve distances from each affected node to the destination

Compute the difference (∆) between new and old distances

∆(a) = 14 − 2 = 12

∆(b) = 11 − 5 = 6

∆(c) = 9 − 7 = 2

Incrementing the weight of link (a, d) by one of these ∆ values

would put the corresponding node in an ECMP transient state.

12 / 27

Introduction Transient loops Link shut Node shut Conclusion

Destination oriented sequences: ECMP state

In an ECMP state, a node uses both its

old and new routes towards the destination.

d

e

3

5

2
8

1

a

b

c

8

11

9

2 + 6

∆ sequence: S∆(d) = {2,6,12}

✄ First values such that the nodes use their new path(s)

13 / 27

Introduction Transient loops Link shut Node shut Conclusion

Destination oriented sequences: ECMP state

In an ECMP state, a node uses both its

old and new routes towards the destination.

d

e

3

5

2
8

1

a

b

c

8

11

9

2 + 6

∆ sequence: S∆(d) = {2,6,12}

✄ First values such that the nodes use their new path(s)

✄ Does not prevent transient loops

13 / 27

Introduction Transient loops Link shut Node shut Conclusion

Destination oriented sequences: ECMP state

In an ECMP state, a node uses both its

old and new routes towards the destination.

d

e

3

5

2
8

1

a

b

c

8

11

9

2 + 6

∆ sequence: S∆(d) = {2,6,12}

✄ First values such that the nodes use their new path(s)

✄ Does not prevent transient loops

Increment seq. (∆+ 1): Si(d) = {3,7,13}

✄ First values such that the nodes use only their new path(s)

13 / 27

Introduction Transient loops Link shut Node shut Conclusion

Destination oriented sequences: ECMP state

In an ECMP state, a node uses both its

old and new routes towards the destination.

d

e

3

5

2
8

1

a

b

c

8

11

9

2 + 6

∆ sequence: S∆(d) = {2,6,12}

✄ First values such that the nodes use their new path(s)

✄ Does not prevent transient loops

Increment seq. (∆+ 1): Si(d) = {3,7,13}

✄ First values such that the nodes use only their new path(s)

Weight seq. (∆+ 1 + w(a,d)): Sm(d) = {5,9,15}

13 / 27

Introduction Transient loops Link shut Node shut Conclusion

Destination oriented sequences: ECMP state

In an ECMP state, a node uses both its

old and new routes towards the destination.

d

e

3

5

2
8

1

a

b

c

8

11

9

2 + 6

∆ sequence: S∆(d) = {2,6,12}

✄ First values such that the nodes use their new path(s)

✄ Does not prevent transient loops

Increment seq. (∆+ 1): Si(d) = {3,7,13} relative to w(a,d)

✄ First values such that the nodes use only their new path(s)

Weight seq. (∆+ 1 + w(a,d)): Sm(d) = {5,9,15} absolute

13 / 27

Introduction Transient loops Link shut Node shut Conclusion

Destination oriented sequences: another destination

Current paths

a

b

c

d

e

3

5

2
8

2

1

New paths

a

b

c

d

e

3

5

2
8

1

14 / 27

Introduction Transient loops Link shut Node shut Conclusion

Destination oriented sequences: another destination

Current paths

a

b

c

d

e

3

5

2
8

2

1

3

6

8

New paths

a

b

c

d

e

3

5

2
8

1

13

10

8

14 / 27

Introduction Transient loops Link shut Node shut Conclusion

Destination oriented sequences: another destination

Current paths

a

b

c

d

e

3

5

2
8

2

1

3

6

8

New paths

a

b

c

d

e

3

5

2
8

1

13

10

8

Extract ∆ values

∆(a) = 13 − 3 = 10

∆(b) = 10 − 6 = 4

∆(c) = 8 − 8 = 0

14 / 27

Introduction Transient loops Link shut Node shut Conclusion

Destination oriented sequences: another destination

Current paths

a

b

c

d

e

3

5

2
8

2

1

3

6

8

New paths

a

b

c

d

e

3

5

2
8

1

13

10

8

Extract ∆ values

∆(a) = 13 − 3 = 10

∆(b) = 10 − 6 = 4

∆(c) = 8 − 8 = 0

Compute an increment sequence: Si(e) = {1,5,11}

14 / 27

Introduction Transient loops Link shut Node shut Conclusion

Global increment sequences

Si(d)
3 7 13

Si(e)
1 5 11

15 / 27

Introduction Transient loops Link shut Node shut Conclusion

Global increment sequences

Si(d)
3 7 13

Si(e)
1 5 11

Merge

Merge destination oriented sequences

✄ Prevent transient loops for all destinations

✄ May contain unnecessary values

15 / 27

Introduction Transient loops Link shut Node shut Conclusion

Global increment sequences

Si(d)
3 7 13

Si(e)
1 5 11

Merge

Minimize
3 7 13

Merge destination oriented sequences

✄ Prevent transient loops for all destinations

✄ May contain unnecessary values

Prune redundant values

✄ Greedy algorithm looking for possible loops at each step

✄ Ensure the minimality in terms of sequence length

15 / 27

Introduction Transient loops Link shut Node shut Conclusion

Global increment sequences

Si(d)
3 7 13

Si(e)
1 5 11

Merge

Minimize
3 7 13

Merge destination oriented sequences

✄ Prevent transient loops for all destinations

✄ May contain unnecessary values

Prune redundant values

✄ Greedy algorithm looking for possible loops at each step

✄ Ensure the minimality in terms of sequence length

✄ Multiple sequences of minimal length

15 / 27

Introduction Transient loops Link shut Node shut Conclusion

1 Introduction

2 Transient loops

3 Link shut

4 Node shut

5 Conclusion

16 / 27

Introduction Transient loops Link shut Node shut Conclusion

The Node Shutdown Problem

Objective: gracefully reroute the traffic out of a node.

17 / 27

Introduction Transient loops Link shut Node shut Conclusion

The Node Shutdown Problem

Objective: gracefully reroute the traffic out of a node.

Simple solution: shut down each
link one by one

✄ Number of intermediate steps

proportional to node degree

17 / 27

Introduction Transient loops Link shut Node shut Conclusion

The Node Shutdown Problem

Objective: gracefully reroute the traffic out of a node.

Simple solution: shut down each
link one by one

✄ Number of intermediate steps

proportional to node degree

+x1, y1, z1

17 / 27

Introduction Transient loops Link shut Node shut Conclusion

The Node Shutdown Problem

Objective: gracefully reroute the traffic out of a node.

Simple solution: shut down each
link one by one

✄ Number of intermediate steps

proportional to node degree

+x1, y1, z1
+x2, y2, z2

17 / 27

Introduction Transient loops Link shut Node shut Conclusion

The Node Shutdown Problem

Objective: gracefully reroute the traffic out of a node.

Simple solution: shut down each
link one by one

✄ Number of intermediate steps

proportional to node degree

+x1, y1, z1
+x2, y2, z2

+x3, y3, z3

17 / 27

Introduction Transient loops Link shut Node shut Conclusion

The Node Shutdown Problem

Objective: gracefully reroute the traffic out of a node.

Simple solution: shut down each
link one by one

✄ Number of intermediate steps

proportional to node degree

+x1, y1, z1
+x2, y2, z2

+x3, y3, z3
+x4, y4, z4

17 / 27

Introduction Transient loops Link shut Node shut Conclusion

The Node Shutdown Problem

Objective: gracefully reroute the traffic out of a node.

Simple solution: shut down each
link one by one

✄ Number of intermediate steps

proportional to node degree

+x1, y1, z1
+x2, y2, z2

+x3, y3, z3
+x4, y4, z4

×

17 / 27

Introduction Transient loops Link shut Node shut Conclusion

The Node Shutdown Problem

Objective: gracefully reroute the traffic out of a node.

Simple solution: shut down each
link one by one

✄ Number of intermediate steps

proportional to node degree

Better solution: benefit from
existing OSPF / IS-IS features

✄ Simultaneous weight

modifications

+x1, y1, z1
+x2, y2, z2

+x3, y3, z3
+x4, y4, z4

×

17 / 27

Introduction Transient loops Link shut Node shut Conclusion

The Node Shutdown Problem

Objective: gracefully reroute the traffic out of a node.

Simple solution: shut down each
link one by one

✄ Number of intermediate steps

proportional to node degree

Better solution: benefit from
existing OSPF / IS-IS features

✄ Simultaneous weight

modifications

+x1, y1, z1
+x2, y2, z2

+x3, y3, z3
+x4, y4, z4

×

+x′

1
+x′

2

+x′

3
+x′

4

17 / 27

Introduction Transient loops Link shut Node shut Conclusion

The Node Shutdown Problem

Objective: gracefully reroute the traffic out of a node.

Simple solution: shut down each
link one by one

✄ Number of intermediate steps

proportional to node degree

Better solution: benefit from
existing OSPF / IS-IS features

✄ Simultaneous weight

modifications

+x1, y1, z1
+x2, y2, z2

+x3, y3, z3
+x4, y4, z4

×

+x′

1
, y′

1
+x′

2
, y′

2

+x′

3
, y′

3
+x′

4
, y′

4

17 / 27

Introduction Transient loops Link shut Node shut Conclusion

The Node Shutdown Problem

Objective: gracefully reroute the traffic out of a node.

Simple solution: shut down each
link one by one

✄ Number of intermediate steps

proportional to node degree

Better solution: benefit from
existing OSPF / IS-IS features

✄ Simultaneous weight

modifications

+x1, y1, z1
+x2, y2, z2

+x3, y3, z3
+x4, y4, z4

×

+x′

1
, y′

1
, z′

1
+x′

2
, y′

2
, z′

2

+x′

3
, y′

3
, z′

3
+x′

4
, y′

4
, z′

4

17 / 27

Introduction Transient loops Link shut Node shut Conclusion

The Node Shutdown Problem

Objective: gracefully reroute the traffic out of a node.

Simple solution: shut down each
link one by one

✄ Number of intermediate steps

proportional to node degree

Better solution: benefit from
existing OSPF / IS-IS features

✄ Simultaneous weight

modifications

+x1, y1, z1
+x2, y2, z2

+x3, y3, z3
+x4, y4, z4

×

+x′

1
, y′

1
, z′

1
+x′

2
, y′

2
, z′

2

+x′

3
, y′

3
, z′

3
+x′

4
, y′

4
, z′

4

×

17 / 27

Introduction Transient loops Link shut Node shut Conclusion

Towards Multi-Dimensional Increments

a b

c d

e

f g

8

6

13

1

2

1

14

1

1

Vector of minimum increments such that a node

x uses a new path, not through n, to reach d.

∆n
d (x)[i] = C′(x ,d)− C(x , li ,d)

18 / 27

Introduction Transient loops Link shut Node shut Conclusion

Towards Multi-Dimensional Increments

a b

c d

e

f g

×

8

6

13

1

2

1

14

1

1

Vector of minimum increments such that a node

x uses a new path, not through n, to reach d.

∆n
d (x)[i] = C′(x ,d)− C(x , li ,d)

18 / 27

Introduction Transient loops Link shut Node shut Conclusion

Towards Multi-Dimensional Increments

a b

c d

e

f g

×

8

6

13

1

2

1

14

1

1

LOOP !

LOOP !

Vector of minimum increments such that a node

x uses a new path, not through n, to reach d.

∆n
d (x)[i] = C′(x ,d)− C(x , li ,d)

18 / 27

Introduction Transient loops Link shut Node shut Conclusion

Towards Multi-Dimensional Increments

a b

c d

e

f g

8

6

14

1

13

2

1

1

1

Vector of minimum increments such that a node

x uses a new path, not through n, to reach d.

∆n
d (x)[i] = C′(x ,d)− C(x , li ,d)

∆3
2
(e) =

(

13 − (2 + 1 + 1 + 1)
)

18 / 27

Introduction Transient loops Link shut Node shut Conclusion

Towards Multi-Dimensional Increments

a b

c d

e

f g

14

8

6 1

13

2

1

1

1

Vector of minimum increments such that a node

x uses a new path, not through n, to reach d.

∆n
d (x)[i] = C′(x ,d)− C(x , li ,d)

∆3
2
(e) =

(

13 − (2 + 1 + 1 + 1)
13 − (2 + 1 + 1 + 1 + 8 + 6)

)

18 / 27

Introduction Transient loops Link shut Node shut Conclusion

Towards Multi-Dimensional Increments

a b

c d

e

f g

8

6

13

1

2

1

14

1+8

1−6

Vector of minimum increments such that a node

x uses a new path, not through n, to reach d.

∆n
d (x)[i] = C′(x ,d)− C(x , li ,d)

∆3
2
(e) =

(

13 − (2 + 1 + 1 + 1)
13 − (2 + 1 + 1 + 1 + 8 + 6)

)

=

(

8
−6

)

18 / 27

Introduction Transient loops Link shut Node shut Conclusion

Towards Multi-Dimensional Increments

a b

c d

e

f g

8

6

14

1

13

2

1

1

1

Vector of minimum increments such that a node

x uses a new path, not through n, to reach d.

∆n
d (x)[i] = C′(x ,d)− C(x , li ,d)

∆3
2
(e) =

(

13 − (2 + 1 + 1 + 1)
13 − (2 + 1 + 1 + 1 + 8 + 6)

)

=

(

8
−6

)

∆3
2
(f) =

(

15 − 3
)

18 / 27

Introduction Transient loops Link shut Node shut Conclusion

Towards Multi-Dimensional Increments

a b

c d

e

f g

14

8

6 1

13

2

1

1

1

Vector of minimum increments such that a node

x uses a new path, not through n, to reach d.

∆n
d (x)[i] = C′(x ,d)− C(x , li ,d)

∆3
2
(e) =

(

13 − (2 + 1 + 1 + 1)
13 − (2 + 1 + 1 + 1 + 8 + 6)

)

=

(

8
−6

)

∆3
2
(f) =

(

15 − 3
15 − 17

)

18 / 27

Introduction Transient loops Link shut Node shut Conclusion

Towards Multi-Dimensional Increments

a b

c d

e

f g

8

6

13

1

2

1

14

1+12

1−2

Vector of minimum increments such that a node

x uses a new path, not through n, to reach d.

∆n
d (x)[i] = C′(x ,d)− C(x , li ,d)

∆3
2
(e) =

(

13 − (2 + 1 + 1 + 1)
13 − (2 + 1 + 1 + 1 + 8 + 6)

)

=

(

8
−6

)

∆3
2
(f) =

(

15 − 3
15 − 17

)

=

(

12
−2

)

18 / 27

Introduction Transient loops Link shut Node shut Conclusion

Towards Multi-Dimensional Increments

a b

c d

e

f g

14

8

6 1

13

2

1

1

1

Vector of minimum increments such that a node

x uses a new path, not through n, to reach d.

∆n
d (x)[i] = C′(x ,d)− C(x , li ,d)

∆3
2
(e) =

(

13 − (2 + 1 + 1 + 1)
13 − (2 + 1 + 1 + 1 + 8 + 6)

)

=

(

8
−6

)

∆3
2
(f) =

(

15 − 3
15 − 17

)

=

(

12
−2

)

∆3
2
(g) =

(

16 − 2
16 − 16

)

18 / 27

Introduction Transient loops Link shut Node shut Conclusion

Towards Multi-Dimensional Increments

a b

c d

e

f g

8

6

13

1

2

1

14

1+14

1+0

Vector of minimum increments such that a node

x uses a new path, not through n, to reach d.

∆n
d (x)[i] = C′(x ,d)− C(x , li ,d)

∆3
2
(e) =

(

13 − (2 + 1 + 1 + 1)
13 − (2 + 1 + 1 + 1 + 8 + 6)

)

=

(

8
−6

)

∆3
2
(f) =

(

15 − 3
15 − 17

)

=

(

12
−2

)

∆3
2
(g) =

(

16 − 2
16 − 16

)

=

(

14
0

)

18 / 27

Introduction Transient loops Link shut Node shut Conclusion

Towards Multi-Dimensional Increments

a b

c d

e

f g

8

6

13

1

2

1

14

1+14

1+0

Vector of minimum increments such that a node

x uses a new path, not through n, to reach d.

∆n
d (x)[i] = C′(x ,d)− C(x , li ,d)

∆3
2
(e) =

(

13 − (2 + 1 + 1 + 1)
13 − (2 + 1 + 1 + 1 + 8 + 6)

)

=

(

8
−6

)

∼

(

8
0

)

∆3
2
(f) =

(

15 − 3
15 − 17

)

=

(

12
−2

)

∼

(

12
0

)

∆3
2
(g) =

(

16 − 2
16 − 16

)

=

(

14
0

)

Negative values denote the absence of constraint on a link.

18 / 27

Introduction Transient loops Link shut Node shut Conclusion

Modeling Loops as Vectorial Constraints

a b

c d

e

f g

×

L1

L2

∆3
2
(e) =

(

8
0

)

∆3
2
(f) =

(

12
0

)

∆3
2
(g) =

(

14
0

)

(d , c)

(d , b)

0 2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

Constraint c associated to a given a loop L.

c := (c := min
∀x∈L

(∆(x)), c̄ := max
∀x∈L

(∆(x)))

19 / 27

Introduction Transient loops Link shut Node shut Conclusion

Modeling Loops as Vectorial Constraints

a b

c d

e

f g

×

L1

L2

∆3
2
(e) =

(

8
0

)

∆3
2
(f) =

(

12
0

)

∆3
2
(g) =

(

14
0

)

(d , c)

(d , b)

0 2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

Constraint c associated to a given a loop L.

c := (c := min
∀x∈L

(∆(x)), c̄ := max
∀x∈L

(∆(x)))

c1 =

(

8

0

)

19 / 27

Introduction Transient loops Link shut Node shut Conclusion

Modeling Loops as Vectorial Constraints

a b

c d

e

f g

×

L1

L2

∆3
2
(e) =

(

8
0

)

∆3
2
(f) =

(

12
0

)

∆3
2
(g) =

(

14
0

)

(d , c)

(d , b)

0 2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

Constraint c associated to a given a loop L.

c := (c := min
∀x∈L

(∆(x)), c̄ := max
∀x∈L

(∆(x)))

c1 =

(

8

0

)

, c̄1 =

(

12

0

)

19 / 27

Introduction Transient loops Link shut Node shut Conclusion

Modeling Loops as Vectorial Constraints

a b

c d

e

f g

×

L1

L2

∆3
2
(e) =

(

8
0

)

∆3
2
(f) =

(

12
0

)

∆3
2
(g) =

(

14
0

)

(d , c)

(d , b)

0 2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

Constraint c associated to a given a loop L.

c := (c := min
∀x∈L

(∆(x)), c̄ := max
∀x∈L

(∆(x)))

c1 =

(

8

0

)

, c̄1 =

(

12

0

)

c2 =

(

12

0

)

, c̄2 =

(

14

0

)

19 / 27

Introduction Transient loops Link shut Node shut Conclusion

Modeling Loops as Vectorial Constraints (2)

a b

c d

e

f g

×

8

6

13

1

2

1

14

1

1

L3

(d , c)

(d , b)

0 2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

20 / 27

Introduction Transient loops Link shut Node shut Conclusion

Modeling Loops as Vectorial Constraints (2)

a b

c d

e

f g

13

2

14

8

6

1

1

1+5

1+3

∆3
0
(f) =

(

5
3

)

(d , c)

(d , b)

0 2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

20 / 27

Introduction Transient loops Link shut Node shut Conclusion

Modeling Loops as Vectorial Constraints (2)

a b

c d

e

f g

13

2

14

8

6

1

1

1+7

1+5

∆3
0
(f) =

(

5
3

)

∆3
0
(g) =

(

7
5

)

(d , c)

(d , b)

0 2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

20 / 27

Introduction Transient loops Link shut Node shut Conclusion

Modeling Loops as Vectorial Constraints (2)

a b

c d

e

f g

×

8

6

13

1

2

1

14

1

1

L3

∆3
0
(f) =

(

5
3

)

∆3
0
(g) =

(

7
5

)

(d , c)

(d , b)

0 2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

c3 =

(

5

3

)

20 / 27

Introduction Transient loops Link shut Node shut Conclusion

Modeling Loops as Vectorial Constraints (2)

a b

c d

e

f g

×

8

6

13

1

2

1

14

1

1

L3

∆3
0
(f) =

(

5
3

)

∆3
0
(g) =

(

7
5

)

(d , c)

(d , b)

0 2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

c3 =

(

5

3

)

, c̄3 =

(

7

5

)

20 / 27

Introduction Transient loops Link shut Node shut Conclusion

Modeling Loops as Vectorial Constraints (3)

c4 =

((

1

8

)

,

(

4

11

))

(d , c)

(d , b)

0 2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

21 / 27

Introduction Transient loops Link shut Node shut Conclusion

Modeling Loops as Vectorial Constraints (3)

c4 =

((

1

8

)

,

(

4

11

))

c5 =

((

2

9

)

,

(

5

12

))

(d , c)

(d , b)

0 2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

21 / 27

Introduction Transient loops Link shut Node shut Conclusion

Defining Safe Weight Increment Sequences

(d , c)

(d , b)

0 2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

A weight sequence s avoids a loop L if and only if s contains

at least one vector meeting the corresponding constraint.

22 / 27

Introduction Transient loops Link shut Node shut Conclusion

Defining Safe Weight Increment Sequences

Forward search:

(d , c)

(d , b)

0 2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

A weight sequence s avoids a loop L if and only if s contains

at least one vector meeting the corresponding constraint.

22 / 27

Introduction Transient loops Link shut Node shut Conclusion

Defining Safe Weight Increment Sequences

Forward search:

(d , c)

(d , b)

Loop free transition bound

0 2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

A weight sequence s avoids a loop L if and only if s contains

at least one vector meeting the corresponding constraint.

22 / 27

Introduction Transient loops Link shut Node shut Conclusion

Defining Safe Weight Increment Sequences

Forward search:

1 c3, c4, c5 || c1, c3 ?

?

?

(d , c)

(d , b)

Loop free transition bound

0 2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

A weight sequence s avoids a loop L if and only if s contains

at least one vector meeting the corresponding constraint.

22 / 27

Introduction Transient loops Link shut Node shut Conclusion

Defining Safe Weight Increment Sequences

Forward search:

1 c3, c4, c5 (greedy)

1

(d , c)

(d , b)

Loop free transition bound

0 2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

A weight sequence s avoids a loop L if and only if s contains

at least one vector meeting the corresponding constraint.

22 / 27

Introduction Transient loops Link shut Node shut Conclusion

Defining Safe Weight Increment Sequences

Forward search:

1 c3, c4, c5 (greedy)

1

(d , c)

(d , b)

Loop free transition bound

0 2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

A weight sequence s avoids a loop L if and only if s contains

at least one vector meeting the corresponding constraint.

22 / 27

Introduction Transient loops Link shut Node shut Conclusion

Defining Safe Weight Increment Sequences

Forward search:

1 c3, c4, c5 (greedy)

2 c1

1 2

(d , c)

(d , b)

Loop free transition bound

0 2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

A weight sequence s avoids a loop L if and only if s contains

at least one vector meeting the corresponding constraint.

22 / 27

Introduction Transient loops Link shut Node shut Conclusion

Defining Safe Weight Increment Sequences

Forward search:

1 c3, c4, c5 (greedy)

2 c1

3 c2

1 2 3

(d , c)

(d , b)

Loop free transition bound

0 2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

A weight sequence s avoids a loop L if and only if s contains

at least one vector meeting the corresponding constraint.

22 / 27

Introduction Transient loops Link shut Node shut Conclusion

Defining Safe Weight Increment Sequences

Forward search:

1 c3, c4, c5 (greedy)

2 c1

3 c2

1 2 3

(d , c)

(d , b)

Loop free transition bound

0 2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

A weight sequence s avoids a loop L if and only if s contains

at least one vector meeting the corresponding constraint.

22 / 27

Introduction Transient loops Link shut Node shut Conclusion

Defining Safe Weight Increment Sequences

Forward search:

1 c3, c4, c5 (greedy)

2 c1

3 c2

Backward search:

(d , c)

(d , b)

Loop free transition bound

0 2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

A weight sequence s avoids a loop L if and only if s contains

at least one vector meeting the corresponding constraint.

22 / 27

Introduction Transient loops Link shut Node shut Conclusion

Defining Safe Weight Increment Sequences

Forward search:

1 c3, c4, c5 (greedy)

2 c1

3 c2

Backward search:

(d , c)

(d , b)

Loop free transition bound

0 2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

A weight sequence s avoids a loop L if and only if s contains

at least one vector meeting the corresponding constraint.

22 / 27

Introduction Transient loops Link shut Node shut Conclusion

Defining Safe Weight Increment Sequences

Forward search:

1 c3, c4, c5 (greedy)

2 c1

3 c2

Backward search:

1 c2, c4, c5

1

(d , c)

(d , b)

Loop free transition bound

0 2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

A weight sequence s avoids a loop L if and only if s contains

at least one vector meeting the corresponding constraint.

22 / 27

Introduction Transient loops Link shut Node shut Conclusion

Defining Safe Weight Increment Sequences

Forward search:

1 c3, c4, c5 (greedy)

2 c1

3 c2

Backward search:

1 c2, c4, c5

1

(d , c)

(d , b)

Loop free transition bound

0 2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

A weight sequence s avoids a loop L if and only if s contains

at least one vector meeting the corresponding constraint.

22 / 27

Introduction Transient loops Link shut Node shut Conclusion

Defining Safe Weight Increment Sequences

Forward search:

1 c3, c4, c5 (greedy)

2 c1

3 c2

Backward search:

1 c2, c4, c5

2 c1, c3

1

2

(d , c)

(d , b)

Loop free transition bound

0 2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

A weight sequence s avoids a loop L if and only if s contains

at least one vector meeting the corresponding constraint.

22 / 27

Introduction Transient loops Link shut Node shut Conclusion

Defining Safe Weight Increment Sequences

Forward search:

1 c3, c4, c5 (greedy)

2 c1

3 c2

Backward search:

1 c2, c4, c5

2 c1, c3

✄ Deterministic process

1

2

(d , c)

(d , b)

Loop free transition bound

0 2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

A weight sequence s avoids a loop L if and only if s contains

at least one vector meeting the corresponding constraint.

22 / 27

Introduction Transient loops Link shut Node shut Conclusion

Greedy backward algorithm (GBA)

Algorithm

1 For each loop L, add the corresponding constraint c to CS.

2 Add to the sequence S a greedy vector gv such that:

∀i ∈ [1, |gv |],gv [i] = MAX (c1[i], c2[i], . . . cn[i]) + 1

3 Remove from CS all constraints met by gv .

Repeat steps 2 and 3 until there is no more constraints in CS.

23 / 27

Introduction Transient loops Link shut Node shut Conclusion

Greedy backward algorithm (GBA)

Algorithm

1 For each loop L, add the corresponding constraint c to CS.

2 Add to the sequence S a greedy vector gv such that:

∀i ∈ [1, |gv |],gv [i] = MAX (c1[i], c2[i], . . . cn[i]) + 1

3 Remove from CS all constraints met by gv .

Repeat steps 2 and 3 until there is no more constraints in CS.

Theorem

Given a set of loop-constraints, GBA computes a minimal sequence

of intermediate increments preventing convergence loops.

23 / 27

Introduction Transient loops Link shut Node shut Conclusion

Sequence Lengths on a Large ISP Network

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14+
Length of the minimal sequence (GBA)

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

A
v

e
ra

g
e

 l
e

n
g

th
 i

n
cr

e
a

se

Uniform incr.
Link-by-link incr.

80

85

90

95

100

C
D

F
(%

)

GBA - CDF

• 90% of the nodes requiring up to 3 intermediate steps

• Link-by-link sequences more than 200% longer

24 / 27

Introduction Transient loops Link shut Node shut Conclusion

1 Introduction

2 Transient loops

3 Link shut

4 Node shut

5 Conclusion

25 / 27

Introduction Transient loops Link shut Node shut Conclusion

Conclusion

Link shut problem

✄ Minimal solution

✄ Low time complexity

Node shut problem

✄ Minimal solution

✄ Reasonable time complexity
✄ Avoid flapping

26 / 27

Introduction Transient loops Link shut Node shut Conclusion

Conclusion

Link shut problem

X Minimal solution

✄ Low time complexity

Node shut problem

✄ Minimal solution

✄ Reasonable time complexity
✄ Avoid flapping

26 / 27

Introduction Transient loops Link shut Node shut Conclusion

Conclusion

Link shut problem

X Minimal solution

X Low time complexity (polynomial)

Node shut problem

✄ Minimal solution

✄ Reasonable time complexity
✄ Avoid flapping

26 / 27

Introduction Transient loops Link shut Node shut Conclusion

Conclusion

X Link shut problem

X Minimal solution

X Low time complexity (polynomial)

Node shut problem

✄ Minimal solution

✄ Reasonable time complexity
✄ Avoid flapping

26 / 27

Introduction Transient loops Link shut Node shut Conclusion

Conclusion

X Link shut problem

X Minimal solution

X Low time complexity (polynomial)

Node shut problem

X Minimal solution

✄ Reasonable time complexity
✄ Avoid flapping

26 / 27

Introduction Transient loops Link shut Node shut Conclusion

Conclusion

X Link shut problem

X Minimal solution

X Low time complexity (polynomial)

Node shut problem

X Minimal solution

X Reasonable time complexity (polynomial)
✄ Avoid flapping

26 / 27

Introduction Transient loops Link shut Node shut Conclusion

Conclusion

X Link shut problem

X Minimal solution

X Low time complexity (polynomial)

Node shut problem

X Minimal solution

X Reasonable time complexity (polynomial)
? Avoid flapping

✄ Improve handling of flapping loops

26 / 27

Introduction Transient loops Link shut Node shut Conclusion

What next?

Theoretical extensions

Interactions with BGP and other routing protocols

Extension to multicast communications

Weight modifications on multiple independent links

Experimental evaluations

Implementation and emulation with Quagga

Measurements on real networks (RENATER)

27 / 27

Introduction Transient loops Link shut Node shut Conclusion

Thank you for your attention.

27 / 27

Appendix

6 Appendix

28 / 27

Appendix

Transient loop induced by route flapping

→ RSPDAG1(4)
Intermediate routing state towards 4

considering the first vector

0

1 2 3

4

a

b c d

e

+7 +2
+3

+0







7
2
3
0







SGBA =







7
2
3
0






,







9
9
8
0







0

1 2 3

4

a

b c d

e

transient flapping edge (on 0)

→ RSPDAG2(4)
Intermediate routing state towards 4

considering the second vector

0

1 2 3

4

a

b c d

e

+9
+9

+8

+0







9
9
8
0







SFF1 =







3
2
3
0






,







7
4
5
0






,







9
9
8
0






SFF2 =







7
2
3
0






,







9
9
8
3







29 / 27

Appendix

Global result table

Topology
#nodes /

S = ∅
Uniform Std GBA

#edges |S| ≤ 5 max |S| ≤ 5 max

Abilene 11 / 28 36.4 % 100 % 3 100 % 3

GEANT 22 / 72 63.6 % 100 % 5 100 % 3

ISP1 25 / 55 69.2 % 100 % 4 100 % 4

ISP2 55 / 195 81.5 % 94.4 % 7 100 % 3

ISP3 110 / 340 59.1 % 81.8 % 21 90.9 % 10

ISP4 140 / 410 67.4 % 85.8 % 21 92.9 % 10

ISP5 210 / 785 56.7 % 74.8 % 63 82.9 % 33

ISP6 1170 / 7240 84.2 % 92.1 % 147 93.2 % 57

30 / 27

Appendix

GBA theory

Theorem

A weight sequence s avoids a loop
L if and only if all pairs of succes-
sive vectors of s form a safe tran-
sition with respect to the constraint
corresponding to L.

Theorem

An always increasing weight se-
quence s avoids a loop L if and only
if s contains at least one vector
meeting the constraint correspond-
ing to L.

Lemma

At each iteration, GBA computes
a vector v that meets at least one
constraint not met before.

Problem

Constraint Minimal Meeting Prob-
lem (CMP): Given a set cs =
{(c1, c̄1), . . . , (cn, c̄n)} of loop-
constraints, compute a minimal
weight increment sequence which
contains no unsafe transition for
any constraint in cs.

Theorem

Given a CMP instance I, GBA com-
putes sequences that prevent con-
vergence loops.

Lemma

Consider a CMP instance I. Let
s = (v1 . . . vn) be any se-
quence solving I, and let g =
(g1 . . . gm) be the sequence com-
puted by GBA on I, with possibly
n 6= m. Then, the last respective
vectors verify vn ≥ gm .

Lemma

Consider a CMP instance I. Let
s = (v1 . . . vn) be any se-
quence solving I, and let g =
(g1 . . . gm) be the sequence com-
puted by GBA on I, with possibly
n 6= m. Then, all the constraints
met by vn (and possibly more) are
also met by gm .

Theorem

The GBA algorithm finds a minimal
sequence for any CMP instance I.

Theorem

GBA terminates in a number of
main loop iterations which is poly-
nomial with respect to the number
of routers in the network.

31 / 27

	Introduction
	Transient loops
	Link shut
	Node shut
	Conclusion
	Appendix

