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Some context

Routing in ISP networks (intra-domain)

Link-state protocols: OSPF, IS-IS

Frequent topological changes

Maintenance operations on links or nodes

Traffic engineering (weight modifications)

. . . and as many convergence periods

Transiently inconsistent state

Possible traffic disruption
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How do transient loops appear?

Routers’ update order is not controlled!
(depends on LSA flooding and RIB/FIB update times)

Example:

Initially, both a and b reach d through a;

d

Routes towards d :

a

b

P1

P2

P1 << P2
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Routers’ update order is not controlled!
(depends on LSA flooding and RIB/FIB update times)

Example:

Initially, both a and b reach d through a;

A change occur on the network;

Path through b more interesting, even for a;

If a updates first and starts sending data

towards d through b, while b still uses a;

A transient loop appears on link (a,b);

✄ Increased latency;

✄ Packet losses.

d

Routes towards d :

b

P ′
1

P ′
2

Old: P1 << P2

New: P ′
1 >> P ′

2

a

LOOP !

5 / 27



Introduction Transient loops Link shut Node shut Conclusion

How to detect them?

For a given destination (e.g. d):

1 Compute routes before and after the change;
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a

b

d

After

a

b

d
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How to detect them?

For a given destination (e.g. d):

1 Compute routes before and after the change;

2 Merge these two directed acyclic graphs (DAG);

3 Perform a cycle detection on the resulting graph.

Before
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How to prevent them?

Force the routers to update in the right order.

Initially, both a and b reach d through a;

d

a

b

P1

P2

P1 + w(b,a) < P2
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How to prevent them?

Force the routers to update in the right order.

Initially, both a and b reach d through a;

The same change occurs;

Yet this time b updates first;

Then a, and no loop appears.

One goal, several approaches.
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Progressive update

Basic idea

Split up the change into a sequence loop free updates.

Objectives

Compute a sequence of intermediate updates, such that:

No transient loop between subsequent updates;

Each intermediate update prevents at least one cycle.

Challenge

Minimal operational impact (sequences of minimal length)
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Illustration: path increment sequence
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Illustration: path increment sequence
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Illustration: path increment sequence

Initially, a, b and c reach d through node a.
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Illustration: path increment sequence

Initially, a, b and c reach d through node a.

If a change occur on path P(a, d) increasing its cost to 50, all three

nodes will go through c instead and transient loops may appear.
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Illustration: path increment sequence
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If a change occur on path P(a, d) increasing its cost to 50, all three
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Illustration: path increment sequence

Initially, a, b and c reach d through node a.

If a change occur on path P(a, d) increasing its cost to 50, all three
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Illustration: path increment sequence

Initially, a, b and c reach d through node a.

If a change occur on path P(a, d) increasing its cost to 50, all three

nodes will go through c instead and transient loops may appear.

With incremental updates:

Node c could update first;

Then b, and a;

So that the transition to 50 will

be loop free.
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Case of a link shut (withdrawal)1

Algorithmic steps

1 Extract destination oriented increment sequences;

2 Merge them into a global increment sequence;

3 Prune useless values to build a minimal sequence.

1The same algorithms may be used for any other kind of modification on a

single link (addition, arbitrary weight increment or decrement).
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Destination oriented sequences: ∆ values
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Retrieve distances from each affected node to the destination

Compute the difference (∆) between new and old distances

∆(a) = 14 − 2 = 12

∆(b) = 11 − 5 = 6

∆(c) = 9 − 7 = 2

Incrementing the weight of link (a, d) by one of these ∆ values

would put the corresponding node in an ECMP transient state.
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Destination oriented sequences: ECMP state

In an ECMP state, a node uses both its

old and new routes towards the destination.
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2 + 6

∆ sequence: S∆(d) = {2,6,12}

✄ First values such that the nodes use their new path(s)
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✄ First values such that the nodes use their new path(s)

✄ Does not prevent transient loops

Increment seq. (∆+ 1): Si(d) = {3,7,13} relative to w(a,d)

✄ First values such that the nodes use only their new path(s)
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Destination oriented sequences: another destination

Current paths
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Extract ∆ values

∆(a) = 13 − 3 = 10

∆(b) = 10 − 6 = 4

∆(c) = 8 − 8 = 0

Compute an increment sequence: Si(e) = {1,5,11}
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Global increment sequences

Si(d)
3 7 13

Si(e)
1 5 11
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Prune redundant values

✄ Greedy algorithm looking for possible loops at each step

✄ Ensure the minimality in terms of sequence length
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Global increment sequences

Si(d)
3 7 13

Si(e)
1 5 11

Merge

Minimize
3 7 13

Merge destination oriented sequences

✄ Prevent transient loops for all destinations

✄ May contain unnecessary values

Prune redundant values

✄ Greedy algorithm looking for possible loops at each step

✄ Ensure the minimality in terms of sequence length

✄ Multiple sequences of minimal length
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The Node Shutdown Problem

Objective: gracefully reroute the traffic out of a node.
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Towards Multi-Dimensional Increments
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Vector of minimum increments such that a node

x uses a new path, not through n, to reach d.

∆n
d (x)[i] = C′(x ,d)− C(x , li ,d)
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Negative values denote the absence of constraint on a link.
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Modeling Loops as Vectorial Constraints

a b

c d

e

f g

×

L1

L2

∆3
2
(e) =

(

8
0

)

∆3
2
(f ) =

(

12
0

)

∆3
2
(g) =

(

14
0

)

(d , c)

(d , b)

0 2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

Constraint c associated to a given a loop L.

c := (c := min
∀x∈L

(∆(x)), c̄ := max
∀x∈L

(∆(x)))
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Modeling Loops as Vectorial Constraints (2)
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Modeling Loops as Vectorial Constraints (3)
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Defining Safe Weight Increment Sequences
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A weight sequence s avoids a loop L if and only if s contains

at least one vector meeting the corresponding constraint.
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Greedy backward algorithm (GBA)

Algorithm

1 For each loop L, add the corresponding constraint c to CS.

2 Add to the sequence S a greedy vector gv such that:

∀i ∈ [1, |gv |],gv [i] = MAX (c1[i], c2[i], . . . cn[i]) + 1

3 Remove from CS all constraints met by gv .

Repeat steps 2 and 3 until there is no more constraints in CS.
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Repeat steps 2 and 3 until there is no more constraints in CS.

Theorem

Given a set of loop-constraints, GBA computes a minimal sequence

of intermediate increments preventing convergence loops.
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Sequence Lengths on a Large ISP Network
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• 90% of the nodes requiring up to 3 intermediate steps

• Link-by-link sequences more than 200% longer
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Conclusion

X Link shut problem

X Minimal solution

X Low time complexity (polynomial)

Node shut problem

X Minimal solution

X Reasonable time complexity (polynomial)
? Avoid flapping

✄ Improve handling of flapping loops
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What next?

Theoretical extensions

Interactions with BGP and other routing protocols

Extension to multicast communications

Weight modifications on multiple independent links

Experimental evaluations

Implementation and emulation with Quagga

Measurements on real networks (RENATER)
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Thank you for your attention.
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Appendix

Transient loop induced by route flapping
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Appendix

Global result table

Topology
#nodes /

S = ∅
Uniform Std GBA

#edges |S| ≤ 5 max |S| ≤ 5 max

Abilene 11 / 28 36.4 % 100 % 3 100 % 3

GEANT 22 / 72 63.6 % 100 % 5 100 % 3

ISP1 25 / 55 69.2 % 100 % 4 100 % 4

ISP2 55 / 195 81.5 % 94.4 % 7 100 % 3

ISP3 110 / 340 59.1 % 81.8 % 21 90.9 % 10

ISP4 140 / 410 67.4 % 85.8 % 21 92.9 % 10

ISP5 210 / 785 56.7 % 74.8 % 63 82.9 % 33

ISP6 1170 / 7240 84.2 % 92.1 % 147 93.2 % 57
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Appendix

GBA theory

Theorem

A weight sequence s avoids a loop
L if and only if all pairs of succes-
sive vectors of s form a safe tran-
sition with respect to the constraint
corresponding to L.

Theorem

An always increasing weight se-
quence s avoids a loop L if and only
if s contains at least one vector
meeting the constraint correspond-
ing to L.

Lemma

At each iteration, GBA computes
a vector v that meets at least one
constraint not met before.

Problem

Constraint Minimal Meeting Prob-
lem (CMP): Given a set cs =
{(c1, c̄1), . . . , (cn, c̄n)} of loop-
constraints, compute a minimal
weight increment sequence which
contains no unsafe transition for
any constraint in cs.

Theorem

Given a CMP instance I, GBA com-
putes sequences that prevent con-
vergence loops.

Lemma

Consider a CMP instance I. Let
s = (v1 . . . vn) be any se-
quence solving I, and let g =
(g1 . . . gm) be the sequence com-
puted by GBA on I, with possibly
n 6= m. Then, the last respective
vectors verify vn ≥ gm .

Lemma

Consider a CMP instance I. Let
s = (v1 . . . vn) be any se-
quence solving I, and let g =
(g1 . . . gm) be the sequence com-
puted by GBA on I, with possibly
n 6= m. Then, all the constraints
met by vn (and possibly more) are
also met by gm .

Theorem

The GBA algorithm finds a minimal
sequence for any CMP instance I.

Theorem

GBA terminates in a number of
main loop iterations which is poly-
nomial with respect to the number
of routers in the network.

31 / 27


	Introduction
	Transient loops
	Link shut
	Node shut
	Conclusion
	Appendix

