
Improving Load Balancing with Multipath Routing
Pascal Mérindol, Jean-Jacques Pansiot, Stéphane Cateloin

LSIIT - ULP - CNRS
Pôle API Boulevard Sébastien Brant

67400 ILLKIRCH FRANCE
Email:{merindol,pansiot,cateloin}@dpt-info.u-strasbg.fr

Abstract— Internet service providers have to provision network
resources to optimize bandwidth utilization. Dynamic routing
protocols take traffic variations into account to control the
load distribution. Multipath routing protocols attempt to take
advantage of the path diversity to bring network robustness
and reliability. Indeed, with a specific traffic engineering policy,
they enable load balancing across several paths. Our aim is
to compute a set of loopfree paths in order to allow routers
to share the load on several next hops depending on current
load measurement. In this paper, we first describe our original
Incoming Interface Multipath Routing technique, DT(p), then
we present a scheme for load balancing, DT(p)-TE, based on
link monitoring. We evaluate and compare our technique with
several existing approaches by a set of simulations, using different
scenarios and topologies.

I. I NTRODUCTION

Traffic engineering (TE) is a critical issue in large IP
backbones. Dynamic routing is able to circumvent congested
links in order to improve the quality of applications such
as HD video and VoIP services. However, overhead imposed
by the frequency of link-state updates, new path activation,
and signaling hampers its deployment. Multipath routing can
balance network load to improve the streaming quality of long
lived flows. Short flows are not specifically concerned with
dynamic routing because their duration can be smaller than the
link state updating period (the duration between two consec-
utive messages of traffic measurement). Despite the potential
benefits in terms of resource control, most backbone networks
still use static routing (OSPF [13] or IS-IS [15] consider
the topology changes but not residual bandwidth fluctuations)
because dynamic routing can lead to route flapping, strong
traffic oscillations and excessive signaling messages overhead.
Packets routed on outdated information can lead to serious
load oscillations if the system does not react quickly enough.
TE objectives can be obtained by routing traffic demands on
multiple paths. Our approach to reach an efficient multipath
routing is divided into four tasks:

a) Compute and position paths.
b) Analyze local traffic activities and advertise the avail-

ability of local resources in the network.
c) Define load balancing policy depending on the computed

(and received) information.
d) Split the traffic among routes.

This paper deals with these four objectives without considering
the possibility to inform upstream nodes about local residual
resources. Multipath routing is also an interesting tool to

provide a fast reaction to protect networks from link or node
failure. However, conditions to use backup paths have to be
stricter than with unipath routing protocols because alternate
routes can be used even without failure.
We propose the following contributions:

a) We introduce theDijkstra Transversealgorithm (DT)
and DT(p) our path validation at depthp procedure.

b) Then, we analyze the load balancing issue in case of
congestion. We present DT(p)-TE, a mechanism which
locally analyzes the bandwidth utilization to dynamically
compute sharing proportions.

c) We finally evaluate DT(p), with DT(p)-TE as a load bal-
ancer scheme, using simulations with several topologies
and traffic traces.

The remainder of this paper is organized as follows. Section2
summarizes related work. Section 3 introduces our incoming
interface multipath routing technique and a simple mechanism
to balance the load on computed routes. Section 4 presents
our simulation scenarios and our main results to underline the
relevance of our techniques.

II. RELATED WORK

There are two main families of routing protocols enabling
load balancing on multiple paths. The first family uses labeling
or source routing mechanisms (deployed above traditional IP-
routing) whereas the second family makes use of hop by hop
routing protocols.
Source routing multipath techniques generally contain two
stages for path provisioning (tunnels built as an overlay
network above the link layer):

a) Source path computation algorithms (such asK’s best
path [7] orCRA[14]) to reduce delays, improve through-
put or compute efficient protection paths.

b) Path signaling protocols (such asRSVP-TE[5], CR-LDP
[8]) to position computed paths.

The main advantage of this type of technique is the ease
with which the administrator can choose TE tunnels, without
considering loop presence as in distributed methods. For
protection and restoration aspects for example, it is important
that the bypass tunnel guarantees the bandwidth requirements
assumed by the primary path. Source path computation allows
to easily verify this kind of constraint. Recent TE protocols
map the traffic of an Ingress-Egress routers pair onto multiple
routes and adapt the load of each route depending on real time

measurements, in order to avoid hot spots and cope with failure
events. Protocols like TeXCP [9] and MATE [6] use probing
packets to measure network response time and thus increase
the network robustness. However, with path protection or load
balancing objectives, only ingress nodes which label or reserve
path resources until the egress nodes are able to shift the traffic
from one path to another. The reaction time can be therefore
as long as the notification delay on the return path. With link
by link protection (for failure or congestion avoidance), the
reaction can be faster, but does not scale very well, since the
number of bypass tunnels can quickly become too large and
similarly with the signaling messages number. Consequently,
the extensibility in terms of Ingress-Egress routers pairsusing
such techniques is limited. In anMPLS cloud, only border
routers can play this role in a reasonable perspective when
local path diversity is a key issue for TE requirements.
The second family gathers IP load balancing methods which
can partially solve these problems. However, they have to
guarantee that IP packets in transit will not loop. We therefore
have to define the properties of loop free routing for distributed
policies. We distinguish betweenlocal traffic coming from
the router itself or from directly attached subnetworks, and
transit traffic coming from other routers. For simplicity, we
assume that they come from distinct interfaces. In figure 1,
we illustrate the difference between transit traffic, coming from
an upstream routerp for example, and local traffic, potentially
coming froms or its subnetwork. This figure can serve as a
basis for definitions and conditions described in this paragraph.

Definition 1 (Loopfree routing property at the node level):
A multipath routing protocol is loopfree if, whenever a router
s sends a local or transit packet to any next hopv towards a
destinationd, this packet never comes back tos.

s

v

d

p

subnetwork

upstream node
downstream node

Fig. 1. Hop by hop loop free routing

Table I gives definitions required to express the loopfree
routing property. We order paths depending on a given link
state metricC, and we focus on the best paths whose first
edges are distinct. To differentiate equal cost paths, we con-
sider the lexicographical order of first hops. The valuation
w denotes the weight of each link, it can be the inverse of
the link capacity for example. Conditions given in Table II
are sufficient but not necessary to define loopfree alternate
paths. Consequently, according to the topology characteristics,
an alternate path cannot always be found, even if there exists
one.

Deployed routers usually implement the ECMP (Equal Cost
MultiPath) feature of routing protocols such as OSPF or IS-IS.

Notations Definitions

G(N, E, w) Oriented graph G with a set of nodes N, a set of
edges E and a strictly positive valuation w of edges.

|N|,|E| respective cardinal of sets N and E.
e = e.x, e.y edge e∈ E connecting node x to node y.
k−(x), k+(x) incoming and outgoing degree of node x.
Pj(s, d) = jth best path linking s to d. Recursively,
{e1, ..., em} this is the best path whose first edge is distinct from

the first edge of thej − 1 best paths.
Cj(s, d) = jth best cost computed on s towards d∑m

i=1
w(ei) (1 ≤ j ≤ k+(s)), (0 < m < |N |).

NHj(s, d) jth best next hop computed on s towards d. This is
the first hope1.y of Pj(s, d).

NH(s, p, d) set of next hops validated on the router s for the
upstream router p as input and towards destination d.

TABLE I

NOTATIONS

Condition for v Name References
Cj(s, d) = C1(s, d) ∧ v = NHj(s, d) ECMP [13],[15]
C1(v, d) < C1(s, d) LFI [20],[21]
C1(v, d) < C1(p, d) SPD [21]

TABLE II

LOOPFREE RULES

Condition LFI ([20]) requires a signaling procedure to obtain
the costs computed by each neighbor for each destination. The
last condition SPD (Source Path Deflection) is used in [21]
to avoid loop at the link level. This article presents a set of
rules whose increasing flexibility allows to widen the space
of valid neighbors. The loopfree routing property at the node
level is not verified. Indeed, a packet can transit twice by the
same router but never by the same link. Authors argue that
the queue is the primary resource to save, however delays can
increase if paths contain several times the same router and
this consumes more resources. We do not think that the queue
usage is the only resource that a network administrator has to
take care of. Condition SPD needs also an enhanced Shortest
Path First (SPF) algorithm to compute best path costs of the
neighborhood.

III. I NCOMING INTERFACE MULTIPATH ROUTINGDT(P)
AND LOAD BALANCING

This section first describes our path computation and val-
idation algorithms. We present our enhanced SPF algorithm
and introduce our validation protocol at depthp. These two
stages produce loop free routes with low computational and
signaling messages overhead. The ability of our proposition to
benefit as much as possible from path diversity is due to the
distinction done on the interface on which the packet arrives.
Other works such as "Source Selectable Path Diversity via
Routing Deflection" [21] and U-TURN [3] (an extension of
the "Loop Free Alternates" technique [4] to reroute the traffic
in case of failure) also use this idea.
Then the TE section deals with the load balancing issue. We
briefly expose the problem of the load sharing and finally

2

S

D

1

2 4

3

5

Best Path Edge

Transverse Edge

Ignored Edge

Fig. 2. Six routes can linkS andD with DT(1)

propose a solution whose main advantage is simplicity.

A. Path computation and validation

In this section we present the ability of our DT(p) technique
to compute a large set of paths. To illustrate the relevance of
our method, we consider the simple network given in figure
2. If all links have the same weight, only the best path via
router1 can be used to linkS andD with existing distributed
multipath techniques (except for SPD, but the loopfree routing
property at node level is not verified).
In this paper, we will show how, with our proposition,S can
benefit from six paths to reachD without creating loops.

1) Dijkstra Transverse (DT):This paragraph gives a short
description of our enhanced SPF algorithm to compute a
multipath cost matrix. A cost matrix computed ons contains
an estimated best cost for|N | destinations and via all possible
(k+(s)) adjacent neighbors.

Terms Definitions

branch all best pathsP1(s, d) in the best path tree
branchh(s) which have the same first edge{s, h}.
transverse an edge is transverse if it connects two distinct branches.
simple a path of m edges{e1, e2, ..., em} such that
transverse {e1, e2, ..., em−1} forms a best pathP1(s, em−1.y)
Pt(s, d) and such thatem is a transverse edge.
backward a path of m edges{e1, e2, ..., em} such that for az i.e
transverse 1 < z < m, {e1, ..., ez} is simple transverse, and such
Pbt(s, d) that {em, em−1, ..., ez} is a best pathP1(d, ez .y).
forward a path of m edges{e1, e2, ..., em} such that for aw i.e
transverse 1 < z < m, {e1, ..., ez} is either
Pft(s, d) simple transverse or backward-transverse and such that,

{em, em−1, ..., ez} is a best pathP1(ez .y, d).

TABLE III

TERMINOLOGY

DT computation consists in three main steps:
(definitions are given in Table III)

a) Compute the best path tree andsimple transversepaths.
b) Construct abackward transversepath set and add it to

the previous set.
c) Construct aforward transversepath set and add it to the

previous set.

At each step, DT stores the best alternatives depending on the
first hop, the outgoing interface. We must consider that edges
in the best path tree are symmetric in valuation and existence
(duplex links) for backward transverse path computation (step
b). The complexity of our algorithm in each root nodes
is, in the worst case, and without an optimized structure to
implement the best cost table:

O(|N |2 + |E| + |N | × k+(s)) = O(|N |2)

Therefore, the DT algorithm introduces a slight overhead in
calculation time (proportional to the outgoing degree:k+(s)).
A complete description of our algorithm is given in [12].
If we use these sets of paths computed on each router without
considering the packet origin, this causes loops due to hop
by hop routing. The composition of next hops computed with
DT needs a validation protocol to transform these next hop
candidates in valid loopfree next hops. We first describe a path
validation with aone hop vision, DT(1): the path validity is
checked in the one hop neighborhood at the incoming interface
granularity.

2) DT(1): Since hop by hop routing with unequal cost
paths may induce loops, we enter the neighbor-node validation
phase. Initially, only equal best cost paths are valid without
considering the incoming interface. Now routers have to
exchange best path cost informations to validate other (simple,
backward or forward) computed paths. A routers sends, for
all destinationsd ∈ N , a message to its downstream router
v = NHi(s, d) which contains the best cost to reachd,
C1(s, d). To validate a NH, we use the following condition:

Cj(v, d) ≤ C1(s, d) (1)

If this condition is verified on a routerv, for an upstream router
s and towards a destinationd, the loopfree routing property is
guaranteed for the next hopNHj(v, d). For all j verifying (1),
NHj(v, d) is marked as a valid next hop for traffic coming
from s to d, andv validates a new routing row(s, NHj(v, d),
d). A routing row on a routers is a triple (p, n, d) meaning
that traffic coming viap for d can be sent to next hopn where
n = NHj(s, d) ∈ NH(p, s, d). If (1) is verified for at least
one j, v sends a positive answer tos, and s marks v as a
valid NH for local traffic towardsd. Then, s is able to use
NHi(s, d) = v for its local traffic. The main advantage of
our technique is the use of a candidate routing table allowing
to individually check the validity of each NH (corresponding
to the first hop of a pathPj). Condition (1) means that the
first hopNHj(v, d) of a pathPj is valid for the couple(s, d)
and for lower cost paths. Indeed, ifv, an adjacent node of
s, guarantees a costC equal to the best one thats has, for
a given destinationd, then, one hop further, the path cost is
strictly less thanC. Note thatPj is validated onv for sas input
(transit traffic coming froms) only if v validatesNHj(v, d)
for its local traffic or if Cj(v, d) = C1(v, d). To increase the
number of validated paths, we have to increase the depth of
the validation process, this is DT(p). DT(p) prunes the DT
subgraph at the depthp to avoid routing loops.

3

3) DT(p): In order to introduce DT(p), we have to define
the notion of route as opposed to the notion ofpath. With
distributed (hop by hop) routing, only the first hop of a path
is actually used for routing.

Definition 2 (Route):Formally we denote a route ofmhops
linking a sources and a destinationd : Rm(s, d), and we
denoteNH(s, s, d), the set of validated next hops of paths
computed by DT ons, for its local traffic. Hence, a route
Rm(s, d) is a composition of validated NHs (depending on
the incoming interface) and takes this form (s = r0, d = rm):

Rm(s, d) = {r1, r2, · · · , ri, ri+1, · · · , rm}

with ri+1 ∈ NH(ri, ri−1, d) andr1 ∈ NH(s, s, d).
With this terminology we can describe our breadth first search
loop detection method withp nodes in depth. This is a wave
of messages calledquerytriggered on each downstream router
v = r1 where DT(1) does not succeed for the upstream
node s on the kth NH of r1: NHk(r1, d). These messages
query(s, d, c, q, P) containc = C1(s, d), the best cost for s,
q (1 ≤ q ≤ p) the number of remaining hops andP the set of
tested routers. In the following we describe our algorithm for
fixed s andd. The aim is to determine if a NH is valid, even
if it does not satisfy condition (1). Withp>1, DT(p) cannot
benefit from the granularity of the incoming interface. Ifp > 1,
condition (1) has to be verified for all NHs computed by DT.
However, a router has only to take care of loops coming back
to itself. A routerrθ (0 < θ < p) can appear twice or more
in the validation phase. The wave triggered on a routerr1

which does not belong toNH(s,s,d)with p=1 (or if a router
r2 = NHk(r1, d) does not belong toNH(r1, s, d)), must
explore, in a radius ofp-1, all NH compositions to test the set
paths generated byDT . If r1, a neighbor ofs, does not verify
condition (1) onNHk(r1, d) = r2, it forwards the validation
messagequery(s, d, c, q − 1, r1) to r2 and waits for a reply.
When a noderi+1 receives aquery(s, d, c, q, P) from ri, the
pseudo code of the DT(p) algorithm can take this form:

⊲ if NHj(ri+1, d) satisfies (1),ri+1 stores a VALID result
for NHj(ri+1, d)

⊲ else if NHj(ri+1, d) = rθ with rθ ∈ P = {r1, ..., ri},
ri+1 stores a SKIP result forNHj(ri+1, d)

⊲ else if NHj(ri+1, d) = s, ri+1 replies with a LOOP
result tori

⊲ else if q > 0, ri+1 sends aquery(s, d, c, q − 1, P) with
P ← P ∪ ri+1 to its candidateNHj(ri+1, d)

⊲ else the max depthp has been reached without success
and a LOOP result is returned tori

When ri, with i > 1, has a result/reply for all its candidate
NHs it computes its own result which is the max of all
responses (the order of replies/results verifiesLOOP >

V ALID > SKIP) and sends it tori−1. NH(ri+1, ri, d) 6= ∅
only if ri verifies condition (1) on a NH ofri+1, or if ri+1

receives a VALID result coming from a routerri+2 for (ri, d).
If r1 receives a VALID answer fromr2, it validates a routing
row (s, r2, d) and transmits this information tos (if there exists
a routing row(r1, r2, d) ⇒ r2 ∈ NH(r1, r1, d)).

With the DT(p) procedure, each routerri in a routeRm(s, d)
guarantees the two following properties (∀i ∈ [0,m]):

(a) If {k|NHk(ri+1, d) = ri+2 ∧Ck(ri+1, d) > C1(ri, d)},
routersri+q, 2≤q≤p guarantee in a maximum radius of
p − q, for each possible NHs composition with DT
(except SKIP NH), a cost less thanC1(ri, d).

(b) NH(ri, ri+1, d) ⊂ NH(ri+1, ri+1, d).
Note for property (a) that, ifNHk(ri+q, d) = ri+j , with 1 ≤
j < q ≤ p, this generates a SKIP result for thekth NH of
ri+q: NHk(ri+q, d). Routersri+q, q≤p must be distinct from
ri (LOOP result), so property (a) permits to generate a VALID
result. The formal proof and a synchronization mechanism are
given in [12], where we have also analyzed the convergence
time. The key idea is the existence of a strictly decreasing best
cost chain on downstream routers verifying the property (a).
After some experimentations it appears that it is not usefulto
try do validate as many next hops as possible. The more DT
stores candidate NHs, the more difficult it is for DT(p), with
p > 1, to verify the property (a). We choose as an improvement
to try to validate only all best cost next hops and the best
valid sub optimal next hop if any (DT has only to store these
NHs). This insures that in most cases there will be at least one
alternate path. The set of routes generated by this improvement
is not a subset of routes validated without modifying DT and
vice-versa.

B. Example

In figure 2, the pathP1(S,D)=S-1-Dis the best path linking
S and D, whereasP2(S,D)=S-2-4-D is a simple transverse
path, Pft(S,D)=S-2-3-1-D is a forward transverse path and
there is no backward transverse path linkingS andD. Edges
{2, 3}, {4,D} and{5,D} are transverse in the best path tree
rooted onS. S-2-3-Dis not a transverse path because the edge
{3,D} connects two paths of the same branch:branch1(S).
This link is ignored in the DT computation byS. However,
node2 may use this edge, thanks to hop by hop routing, for
its upstream nodeS in order to form a route. DT computes
all paths containing at most one transverse edge. In the same
example, DT finally only stores the best pathS-1-D for the
outgoing interface towards1 and a transverse pathS-2-4-Dfor
the outgoing interface2.
With DT(1), if we consider an uniform link valuation, six
routes are validated fromS to D : S-1-D, S-1-3-D, S-2-
3-D, S-2-4-D, S-2-4-5-D, S-2-3-1-D. To illustrate the NH
composition, let us consider the path computed on2 with
DT. Router2 computes a path viaS = NH3(2,D) to reach
D, so that packets may loop on the link{S,D}. Indeed,
router 2 has three candidate routing rows corresponding to
its best path2-3-D, a transverse path2-4-D and a backward
transverse path2-S-1-D. However,2 does not validate the last
path forS as an incoming interface, but it validates this next
hop only for its local traffic,NH(2, 2,D), to form the route
R3(2,D) = {S, 1,D}.
Thanks to DT(3),2 can use the alternate route2-3-D-4to reach
4. On the router3, the path viaD does not satisfy condition (1).
Then, DT(3) explores the routerD which has two solutions

4

to reach4 (because of DT modification to improve DT(p)).
NH1(D, 4) = 4 satisfies condition (1) butNH2(D, 4) =
5 does not. Thus,D sends query(2, 4, 1, 1, {3,D}) to 5.
NH1(5, 4) = 4 produces a VALID result andNH2(5, 4) = D

generates a SKIP result.5 send a VALID reply toD which
do the same with3. 3 validates a routing row(2, 4,D) for
transit traffic coming froms because(3, 4,D) is activated
(C2(3, 4) = C1(3, 4)) and informs 2 which validates the
routing row (2, 3,D) for its local traffic.

C. Load balancing

This section presents a formulation of the load balancing
issue and a proposition in a distributed multipath context.Load
balancing is common in ISP networks. There exists several
theoretical propositions, but only the simplest ones are used
in real environments. We tried to find a compromise between
computational overhead and reactivity. Indeed, accordingto
the time scale of our measurements to analyze the network
activities, it is very difficult to quickly react to fast and strong
load oscillations using a complex algorithm.
In this paper we consider load balancing among variable rate
flows such as TCP flows.

1) TE module: Bandwidth measurement may allow to
prevent congestions. We choose a load balancing scheme
which favors the minimal cost path utilization until significant
trouble occurs. Our TE load balancer prevents routers from
recalculating unnecessary proportions so often that it could
lead to unwanted oscillations. In our context, the objective
of real time measurements is to produce a set of proportions
corresponding to the quantity of load to share among several
next hops for the same destination. When the network is
weakly loaded, it is preferable that routers only use one of
their best next hop (the minimal cost path) in order to use less
resources. This set of proportions is associated to a specific
destination and has to verify several conditions.
Formally, we denote,{xd

1, x
d
2, ..., x

d
j , ..., x

d
n} the vector of

global (local and transit traffic) proportions according toa des-
tinationd on a routers which hasn possible next hops to reach
d. j denotes the rank of the path according to metricC given in
table I. We also denote{xd

1(p), xd
2(p), ..., xd

j (p), ..., xd
n(p)} the

proportions of traffic coming from interfacep sent viaNHj .
Note that if NHj is not a valid next hop for traffic coming
from p, its proportion is set to0. We denoteVd(p) and V T

d

respectively, the load coming fromp and the total load aimed
at destinationd. I denotes the set of potential upstream routers
to s related to destinationd.
These variables are subject to the following constraints:

n∑

j=1

xd
j = 1 (2)

∀p ∈ I

n∑

j=1

xd
j (p) = 1 (3)

∀j ∈ 1, ...n

k−(s)∑

p=1

xd
j (p) × Vd(p)

V T
d

= xd
j (4)

Equations (2) and (3) imply the consistency of global and per
incoming interface proportions. Equation (4) indicates that the
sum of incoming proportions reported to the quantity of traffic
they have to support depends on global proportions.
We define the functionU(l), wherel an outgoing link ofs, as
the total traffic on linkl divided by its capacitycl :

U(l) =

{j|NHj(s,d)=l.x}∑

p∈I,d∈N

xd
j (p) × Vd(p)

cl

wherexd
j (p) corresponds to the portion of traffic coming from

p which is sent via the linkl towardsd.
A global heuristic to improve network usage is to minimize
the maximum link utilization in the network, i.e:

min max
l∈L

U(l) (5)

The objective of this optimization problem is to anticipate
congestion by minimizing the load of highest loaded links. The
idea is that when links are weakly loaded, network response
time is globally better. Such a formulation implies linear pro-
gramming in order to optimize this global objective function.
This is unsuitable for a distributed and high performance
computation, especially to produce quick local decisions when
the traffic is unpredictable. We choose to use a purely local
incremental heuristic to approach desired proportions. First,
we decide to not consider destination and incoming interface in
our measurements, in order to reduce complexity. Each router
s only needs to measure the load, denotedul = U(l) × cl

during a chosen time scalet, for each of its outgoing links.
The load balancer reacts only when a linkl is stressed ac-
cording to a given threshold:ul > α×cl. Actually, the choice
of a time scale is a fundamental issue. For example, a gigabit
incoming traffic can fill up a queue of600 000bits (75 packets
of 1000 bytes) in 0.6 milliseconds. The monitoring period
should be strictly smaller than the millisecond to compute
new proportions which allow to dynamically avoid loss. So
we aim at preventing only persistent congestions during more
than a second. With our load balancing scheme, each router
only needs to compute the load of each of its links and to
determine which one carries the most critical load. Our TE-
module shifts the amount of demands on an alternate next hop
if its own traffic is low enough. After each monitoring period
t, a routers chooses (if there are multiple local congestions)
its worst link in terms of load and moves a part of this load
to the best non-stressed NH (a NH is considered as non-
stressed iful < β × cl). A link l corresponds to ajth NH
(l.x = NHj(s, d)) for a set of couples destination/incoming
interface (d, p). We use the following formula to compute
the relaxed proportion on the most stressed linkl after each
monitoring periodt :

∀p ∈ I, d ∈ N xd
j (p) ← xd

j (p) × (
α × cl

ul

) (6)

If a congestion occurs on a linkl, our load balancer shifts,
for every possible destination and incoming interface (if there

5

exists a local non stressed alternative), the corresponding pro-
portionxd

j (p) to an alternate NH. In practice, to adjust propor-
tions, we take into account the NH capacity and the associated
alternate route cost. The intuitive idea is to incrementally reach
proportions approximating the min-max problem given in (5)
but only when links are really stressed. We also define a
mechanism to return to the initial condition when a linkl,
corresponding to a primary next hop in some routing row, is
not stressed anymore. The proportionxd

1(p) corresponding to
a routing row(p,NH1(l.x, d), d) progressively returns to 1.
It is important to understand that this paper aims to underline
the advantage of path diversity generated with DT(p) rather
than show performances of our local load balancing scheme.
Indeed, our TE load balancer is a simple heuristic and our
aim is to put forth the interest of using a good set of paths,
in terms of quality and quantity.

2) TCP incidence:Dynamic load balancing needs schemes
that split traffic across several paths linking the same pair
of routers using a fine granularity. Traffic can be split at
two levels. Packet level splitting (for example with a simple
round robin scheduling) is well suited to quickly assign the
computed load proportion on each path. When paths have
different delays, this fine granularity can mis-order a large
number of packets. A TCP flow interprets this mis-ordering
as a sign of congestion and reduces its congestion window
size, resulting in lower performance.
Flow level splitting (a flow can be defined at different levels
of granularity: source, destination, port, ...) maps each flow
to a specific path and solves the mis-ordering problem. With
this type of splitting (often based on hashing schemes), load
assignment is unable to accurately and quickly re-balance the
load if strong variations in traffic demand occur. FLARE [10]
is a compromise between these two solutions. This technique
exploits a simple observation on the maximal delay difference
between parallel paths and the time between two consecutive
packet bursts. It switches packet bursts instead of flows. In
this case, load splitting is more accurate and avoids the TCP
mis-ordering problem.
In our simulations, we split traffic at the flow level. All packets
belonging to a given flow are tagged at the source with a
unique random numbern ∈ [0, N]. The tag is then similarly
exploited by each multipath router to determine the next hop
to use. Routers just pick the tag and forward the packet to
the path for which the proportion boundaries contain the tag
value. This tag could also be computed (by a hashing method
for example) and be used differently on each hop. Technically,
the IP packet header must contain a tag value belonging to a
⌈log2N⌉ bit field. With IPv6 the flow label can easily contain
this tag whereas the ToS/DSCP field can carry it in IPv4 .
Note that the tag could be used to implement some form of
QoS routing. For example, we could decide to force small
sized flows to systematically follow the best route. In [17],the
authors deliver a detailed analysis of long lived flows routing
issues. They propose to route long lived flows on non-minimal
routes, but to forward short flows on the shortest path.

IV. EVALUATION AND SIMULATION

A. Simulation setup

We use Network Simulator 2 [2] (ns2) in order to compare
different routing approaches. SPF and ECMP routing protocols
are already implemented in ns2 with a link state metric. We
have extended ns2 to implement DT(p) and LFI routing and
added our TE module to the classifier.

1) Simulation topologies:We present here results obtained
on three different topologies. The first two networks (Open
transit and Alternet) are topologies measured from traces.
We choose these two topologies among a larger set of maps
(given in [1]). Alternet represents the category of very meshed
network whereas Open transit is less connected. These network
topologies have been obtained through themrinfo tool. For
networks where native multicast routing is enabled andmrinfo
is not filtered, this tool gives precise maps of router inter-
connections (see [16]). For simplicity, we assume symmetry
in connectivity and weight assignment and we consider each
link to be cost equal. We favor the use of our own topologies
because the authors of [18] have found that the Rocketfuel
topologies have significantly higher apparent path diversity
than what they measure in reality. These topologies both
contain false links and miss actual links, and therefore can
create an important bias.
We have also simulated the real propagation delays of each
link using an orthodromic method allowing us to determine the
physical length of each link fairly precisely. For the GEANT
topology, we use an additive metric and a link valuation given
in [19]. Table IV summarizes the main characteristics of our
evaluation networks.

Network name # of nodes # of edges Diameter

Alternet 83 334 8
Open Transit 76 206 11

GEANT 23 74 6

TABLE IV

EVALUATION NETWORKS

2) Traffic: While most Internet flows are short lived and
small sized, the majority of the packets and bytes belong
to long lived and big sized flows (see [11] for a detailed
traffic analysis). Indeed, flow size distribution as well as flow
duration distribution follows a heavy tailed distribution. We
have run simulation scenarios under realistic traffic conditions.
Our flow generator uses the data sets given in [19]. The sets
of traces describe traffic activities by periods of 15 minutes.
Each data set consists of traffic matrices built using full IGP
routing information, sampled Netflow data and BGP routing
information. A traffic matrix gives us the amount of traffic
exchanged between each pair of nodes. We have replayed
network activities using the information given in the traffic
matrix with the finest granularity in order to simulate a real
network behavior. It produces coherent traffic quantity accord-
ing to the given traffic matrix, and it generates a heavy tailed

6

flow size distribution. We use a random number generator to
draw a valuem belonging to[0, 1] and we apply the following
function m → xmin

mk to determine a flow size. The resulting
flow size frequencies follow a power law distribution.xmin

is the minimum flow size andk is the shape parameter.
We choose a shape parameterk = 2 for our flow size
generation to perform a good compromise between intensive
flow generation and the running time of our simulations. We
do not consider the application level but only the transport
protocol level characteristics. Each entry(i, j) in the traffic
matrix is decomposed in TCP flows (the minimum flow size is
xmin = 20kB whereas the maximum flow size is bounded by
10GB). These flows generate TCP elastic traffic from routeri

towards routerj with a randomly chosen departure time. Each
simulation script generates at least100 000flows. 80% of the
global load is carried by the20% biggest flows (whose size
is superior to500kB). We have considered that the impact
of very small flows is negligible. In practice, we use drop-
tail queues which are able to contain75 packets of1kB and
the sender’s TCP window is bounded by65 packets. The
traffic quantity given in [19] data sets is not sufficient to stress
(loss and links utilization are very low) the over-provisionned
GEANT network, so we increase some entries in the matrix to
artificially trigger significant congestions. Results havebeen
obtained on a subset of possible congestion scenarios. We
choose to increase the load on links which are already loaded
(the load recorded at the time scale of the second exceeds10%
on links with a capacity superior to2Gb.s−1). We define and
use three models of congestions:1 → n, n → 1 and 1 → 1.
The first two models increase by a factor of 5 a row or a
column of the traffic matrix whereas the third model increases
a single entry. In all cases, we choose to generate a single
persistent link congestion with SPF routing.

B. Results

1) Path diversity results:First, we have evaluated path
diversity depending on the path validation protocol. We have
computed the total number of possible routes enabled with
DT(3), LFI and SPF. Figure 3 shows the path diversity in

 1

 10

 100

 1000

 10000

 100000

1 2 3 4 5 6 7 8 9 10 11

N
um

be
r

of
 r

ou
te

s

Best cost route (OpenTransit & Alternet)

DT(3)
DT(1)

LFI
SPF

Fig. 3. Routes number

terms of loopfree routes. These routes are gathered according

to the shortest route which links a pair of routers. This figure
compares the ability of each of these techniques to find a
large number of alternate routes. Each bar represents (witha
logarithmic scale) the number of alternate and shortest routes,
grouped by the length of the shortest one. The number of
alternate routes is very low with LFI (or ECMP). Actually,
when the link valuation is uniform, LFI validates only equal
best cost paths. In real topologies, this kind of characteristic
is rare. We have also analyzed the capabilities in terms of
rerouting. We have measured the percentage of routers able
to use an alternative route to circumvent congestions on a
primary route. Table V gives a synthetic view of these results.
Local rerouting means there exists a local alternative on the
router detecting the congestion whereas upstream rerouting
means that an upstream router, including up to the source, may
redirect the traffic if it receives a warning. Such a difference
between LFI and DT(1) for Alternet and Open transit networks
is partially due by the uniform link valuation (for a detailed
analysis of topology characteristics, refer to [12]). Indeed, on
a valuated topology such as GEANT, we observe different
results. A depthp > 1 allows to benefit from cycles of long
size whereas LFI can produce better results than DT(1) if the
topology does not permit to take advantage of condition (1).

Network name Local Upstream
LFI DT(1) DT(3) LFI DT(1) DT(3)

Alternet 17.8 97.8 99.2 34.2 98.4 99.8
Open Transit 15.9 59.7 77.8 33.3 75.7 91.7
GEANT 36.6 36.6 74.6 63.4 62.4 94

TABLE V

REROUTING CAPACITIES

2) TE results: In this section, we present a set of simu-
lations to evaluate the performance of different path valida-
tion techniques associated with our load balancer. We have
retrieved two main indicators to compare the efficiency of LFI
(with our TE load balancer mechanism), DT(1)-TE and DT(3)-
TE compared to SPF routing:

i- Global number of dropped packets.
ii- Link load in the time scalet.

Table VI contains our main simulation results. The first line
gives the average packet loss reduction ratio compared to SPF.
The second line shows the average load percentage of the most
loaded link. We discard the warm up period and just consider
the steady state period. Average load results on each run have
been obtained with a95% confidence level. The confidence
interval is below0.1% of the link capacity in the steady state
period of each run. The parameters used for our load balancer
are t = 1s, α = 1

2 andβ = α
2 .

Indicators LFI DT(1) DT(3)
average loss reduction ratio 3.8 4.2 6.5
average load of most loaded links (SPF:76%)61.4 61.4 51.8

TABLE VI

TE RESULTS

7

We have also measured each TCP flow duration. The differ-
ence in duration with SPF is not really significant although in
favor of multipath routing under these simulation conditions.
DT(1) brings the best results but the difference with LFI is
insignificant. We observe a slight deterioration in the duration
of diverted flows with DT(3) compared to LFI and DT(1) when
using TCP windows of 65 packets. This is due to the use of
alternate routes presenting a larger RTT. A larger RTT reduces
performance when the TCP window size limits throughput. We
notice that, using a larger TCP windows, DT(p), withp > 1,
can reduce flows duration. DT(p) computes non-optimal routes
which can be useful in case of significant trouble (critical
congestions or link/router fault). Moreover, results of the table
VI represent the mean values of all simulations results. In
approximatively 1 simulation out of 5, our TE load balancer
simply moves the congestion to another link. In some of
these cases, the load balancer does not improve routing. In
future works, it will be necessary to define how routers may
coordinate local actions in order to provide a more efficient
reaction in these particular cases. Figure 4 illustrates the most
loaded link utilization with different techniques.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120

T
im

e(
%

)

Cumulative load(%)

SPF
LFI

DT(3)

Fig. 4. Cumulative load

The x-axis gives the percentage of load depending on the
link capacity. Here, load means the quantity of traffic that the
router tries to forward on the considered link at the time scale
of t. We use load data collected in each simulation. The y-axis
shows the cumulative utilization time during the steady state
period. We observe that DT(3) allows to reduce critical link
utilization compared to SPF and LFI (DT(1) results are almost
equal to LFI results). For example the load is less than 50%
during 40% of time with SPF and during 58% of time with
DT(3). We also notice that multipath routing permits to use
non-stressed links to balance the load. The depth parameter
p is a key factor to minimize the maximum link utilization.
However, with a largep, the load balancer has to guarantee a
careful use of longer alternate routes.

V. CONCLUSION

Congestion control algorithms can coexist at transport and
routing level to balance the load in IP networks. In this paper

we proposed a new scheme to improve network response
in a distributed way. DT(p)-TE offers the possibility to use
temporarily alternative routes in order to reduce packet loss
and throughput decrease. Simulation results emphasize the
interest of our proposition. The path diversity and the capacity
to coexist with an elastic and non stationary fluid model of
traffic, such as TCP flow aggregation, seems to be fundamental
to perform dynamic routing. We still have to work on the
adjustment of the time scale parameter of the load balancer.
This issue is essential to trigger an appropriate reaction and
implement an efficient local load balancing. We also have
to work on the way to coordinate reactions between routers.
So they could exchange local informations in order to avoid
inappropriate load shifting when local decisions are inefficient.
With such a signaling protocol, a router should be able to
consider the route quality up to the destination. We are
currently investigating the convergence time of a protocol
which distributes the load balancing decisions. This problem
concerns both congestion avoidance and fast rerouting issues
when there is no local solution.

REFERENCES

[1] “Multicast maps, http://clarinet.u-strasbg.fr/∼merindol/maps.tar.gz.”
[2] “The network simulator- ns2, http://www.isi.edu/nsnam/ns.”
[3] A. Atlas, “U-turn alternates for ip/ldp fast-reroute draft-atlas-ip-local-

protect-uturn-03,” IETF, Draft, Feb. 2006.
[4] A. Atlas and A. Zinin, “Basic specification for ip fast-reroute: Loop-free

alternates draft-ietf-rtgwg-ipfrr-spec-base-06,” IETF, Draft, mar 2007.
[5] D. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan, and G.Swallow,

“Rsvp-te: Extensions to rsvp for lsp tunnels,” IETF, RFC 3209, 2001.
[6] A. Elwalid, C. Jin, S. H. Low, and I. Widjaja, “MATE: MPLS adaptive

traffic engineering,” inINFOCOM, 2001, pp. 1300–1309.
[7] D. Eppstein, “Finding the k shortest paths,” inIEEE Symposium on

Foundations of Computer Science, 1994, pp. 154–165.
[8] B. Jamoussi, L. Andersson, R. Callon, R. Dantu, L. Wu, P. Doolan,

T. Worster, and N. Feldman, “Constraint-based lsp setup using ldp,”
IETF, RFC 3213, Jan. 2002.

[9] S. Kandula, D. Katabi, B. Davie, and A. Charny, “Walking the tightrope:
Responsive yet stable traffic engineering,” inSIGCOMM ’05, 2005, pp.
253–264.

[10] S. Kandula, D. Katabi, S. Sinha, and A. Berger, “Dynamic load
balancing without packet reordering,” inACM SIGCOMM vol.37, April
2007, pp. 51–62.

[11] K. Lan and J. Heidemann, “On the correlation of internet flow charac-
teristics,” USC/ISI Technical Report ISI-TR-574, Tech. Rep., 2003.

[12] P. Merindol, J. J. Pansiot, and S. Cateloin, “Path computation for
incoming interface multipath routing,” inECUMN’07, 2007, pp. 75–85.

[13] J. Moy, “Ospf version 2,” IETF, RFC 2178, Apr. 1998.
[14] S. Nelakuditi and Z.-L. Zhang, “On selection of paths for multipath

routing,” in Proceedings of IWQoS, 2001.
[15] D. Oran, “Is-is intra-domain routing protocol,” IETF, RFC 1142, 2001.
[16] J. J. Pansiot, “Local and dynamic analysis of internet multicast router

topology,” Annals of telecommunications, vol. 62, no. 3-4, 2007.
[17] A. Shaikh, J. Rexford, and K. G. Shin, “Load-sensitive routing of long-

lived ip flows,” SIGCOMM Computer Communication Review, vol. 29,
no. 4, pp. 215–226, 1999.

[18] R. Teixera, K. Marzullo, S. Savage, and G. M. Voelker, “In search of
path diversity in isp network,” inACM IMC ’03, October 2003.

[19] S. Uhlig, B. Quoitin, S. Balon, and J. Lepropre, “Providing public in-
tradomain traffic matrices to the research community,”ACM SIGCOMM
Computer Communication Review, vol. 36, no. 1, January 2006.

[20] S. Vutukury, “Multipath routing mechanisms for traffic engineering and
quality of service in the internet,” Ph.D. dissertation, University of
California, Santa Cruz, Mar. 2001.

[21] X. Yang and D. Wetherall, “Source selectable path diversity via routing
deflections,” inSIGCOMM vol.36, october 2006, pp. 159–170.

8

