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Some context

Intra-domain routing in IP networks;

Link-state protocols (OSPF, IS-IS)

possibly running MPLS with LDP;

Frequent topological changes;

Maintenance operations on links or nodes;

Traffic engineering (weight modifications);

✄ Possible extension: unplanned changes;

. . . and as many convergence periods;

Inconsistent transient state;

Possible traffic disruption.
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How do transient loops appear?

Routers’ update order is not controlled!
(depends on LSA flooding and RIB/FIB update times)

Example:

Initially, both a and b reach d through a;

d

Routes towards d :

a

b

P1

P2

P1 << P2
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A change occurs on the network;

Path through b more interesting, even for a;

If a updates first and starts sending data

towards d through b, while b still uses a;

A transient loop appears on link (a,b);
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✄ Packet losses.
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How to prevent them?

Force the routers to update in the right order.

Initially, both a and b reach d through a;

d
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P1 + w(b,a) < P2

6 / 19



Introduction Transient loops Node shut Conclusion

How to prevent them?

Force the routers to update in the right order.

Initially, both a and b reach d through a;

The same change occurs;
d

P ′

1

P ′

2

Old: P1 + w(b,a) < P2

New: P ′
1 > w(a,b) + P ′

2

b

a

6 / 19



Introduction Transient loops Node shut Conclusion

How to prevent them?

Force the routers to update in the right order.

Initially, both a and b reach d through a;

The same change occurs;

Yet this time b updates first;
d

P ′

1

P ′

2

Old: P1 + w(b,a) < P2

New: P ′
1 > w(a,b) + P ′

2

b

a

6 / 19



Introduction Transient loops Node shut Conclusion

How to prevent them?

Force the routers to update in the right order.

Initially, both a and b reach d through a;

The same change occurs;

Yet this time b updates first;

Then a, and no loop appears.

d

P ′

1

P ′

2

Old: P1 + w(b,a) < P2

New: P ′
1 > w(a,b) + P ′

2

b

a

6 / 19



Introduction Transient loops Node shut Conclusion

How to prevent them?

Force the routers to update in the right order.

Initially, both a and b reach d through a;

The same change occurs;

Yet this time b updates first;

Then a, and no loop appears.

One goal, several approaches.
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Related works

Ordered FIB [INFOCOM’05, TON’07]

Explicit router update ordering;

Relies on protocol extensions;

Non-incremental deployment;

IGP migration [SIGCOMM’12]

Designed for network-wide migrations;

Requires to maintain two concurrent control planes;

Huge overhead for single link or node modifications;

Metric increment - Link shut [INFOCOM’07, TON’13]

Progressive link weight update;

Suited for single link modifications;
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Progressive update

Basic idea

Split up the change into a sequence of loop free updates.

Objectives

Compute a sequence of intermediate updates, such that

there is no transient loop between subsequent updates.

Challenge

Sequences of minimal length (minimal operational impact);

Efficient algorithm (embedded in router OS).
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Illustration: path increment sequence
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Illustration: path increment sequence

Initially, a, b and c reach d through node a.

If a change occur on path P(a, d) increasing its cost to 50, all three

nodes will go through c instead and transient loops may appear.

With incremental updates:

Node c could update first;

Then b, and a;

So that the transition to 50 will

be loop free for destination d .
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The Node Shutdown Problem

Objective: allow an operator to shut a router down

without triggering transient inconsistencies.
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Modeling Loops as Vectorial Constraints
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c := (min
∀x∈L

(∆(x)),max
∀x∈L

(∆(x)))
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Modeling Loops as Vectorial Constraints (3)
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Defining Safe Weight Increment Sequences

Greedy Backward Algorithm (GBA)

At each step, retrieve the maximum
value on each index among the lower
bounds of the remaining constraints.
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of intermediate increments preventing convergence loops.
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Sequence Lengths on a Real ISP Network
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✄ Graph with more than 1000 nodes and 4000 links;

✄ 90% of the nodes requiring at most 3 intermediate steps.
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✄ Shortest possible sequences;

X Time efficient algorithm;

✄ Polynomial complexity;

X Generic approach;
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Future works

✄ Implementation in Quagga;

✄ Evaluation in a real network.
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Thank you for your attention.
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Appendix

Transient loop induced by route flapping
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