
Introduction Transient loops Node shut Conclusion

Graceful Operations in Link-State

Routing Protocols

Francois CLAD, Pascal MERINDOL, Stefano VISSICCHIO,

Jean-Jacques PANSIOT and Pierre FRANCOIS

International Conference on Network Protocols

Göttingen, Germany, October 7-11, 2013

1 / 19



Introduction Transient loops Node shut Conclusion

1 Introduction

2 Transient loops

3 Node shut

4 Conclusion

2 / 19



Introduction Transient loops Node shut Conclusion

Some context

Intra-domain routing in IP networks;

Link-state protocols (OSPF, IS-IS)

possibly running MPLS with LDP;

Frequent topological changes;

Maintenance operations on links or nodes;

Traffic engineering (weight modifications);

✄ Possible extension: unplanned changes;

. . . and as many convergence periods;

Inconsistent transient state;

Possible traffic disruption.

3 / 19



Introduction Transient loops Node shut Conclusion

Some context

Intra-domain routing in IP networks;

Link-state protocols (OSPF, IS-IS)

possibly running MPLS with LDP;

Frequent topological changes;

Maintenance operations on links or nodes;

Traffic engineering (weight modifications);

✄ Possible extension: unplanned changes;

. . . and as many convergence periods;

Inconsistent transient state;

Possible traffic disruption.

Detect
change

Propagate
LSPs

Recompute
RIB

Update
FIB

C
o

n
ve

rg
e

n
c
e

p
e

ri
o

d
3 / 19



Introduction Transient loops Node shut Conclusion

1 Introduction

2 Transient loops

3 Node shut

4 Conclusion

4 / 19



Introduction Transient loops Node shut Conclusion

How do transient loops appear?

Routers’ update order is not controlled!
(depends on LSA flooding and RIB/FIB update times)

Example:

Initially, both a and b reach d through a;

d

Routes towards d :

a

b

P1

P2

P1 << P2

5 / 19



Introduction Transient loops Node shut Conclusion

How do transient loops appear?

Routers’ update order is not controlled!
(depends on LSA flooding and RIB/FIB update times)

Example:

Initially, both a and b reach d through a;

A change occurs on the network;

Path through b more interesting, even for a;

d

Routes towards d :

b

P ′

1

P ′

2

Old: P1 << P2

New: P ′
1 >> P ′

2

a

5 / 19



Introduction Transient loops Node shut Conclusion

How do transient loops appear?

Routers’ update order is not controlled!
(depends on LSA flooding and RIB/FIB update times)

Example:

Initially, both a and b reach d through a;

A change occurs on the network;

Path through b more interesting, even for a;

If a updates first and starts sending data

towards d through b, while b still uses a;

d

Routes towards d :

b

P ′

1

P ′

2

Old: P1 << P2

New: P ′
1 >> P ′

2

a

5 / 19



Introduction Transient loops Node shut Conclusion

How do transient loops appear?

Routers’ update order is not controlled!
(depends on LSA flooding and RIB/FIB update times)

Example:

Initially, both a and b reach d through a;

A change occurs on the network;

Path through b more interesting, even for a;

If a updates first and starts sending data

towards d through b, while b still uses a;

A transient loop appears on link (a,b);

d

Routes towards d :

b

P ′

1

P ′

2

Old: P1 << P2

New: P ′
1 >> P ′

2

a

LOOP !

5 / 19



Introduction Transient loops Node shut Conclusion

How do transient loops appear?

Routers’ update order is not controlled!
(depends on LSA flooding and RIB/FIB update times)

Example:

Initially, both a and b reach d through a;

A change occurs on the network;

Path through b more interesting, even for a;

If a updates first and starts sending data

towards d through b, while b still uses a;

A transient loop appears on link (a,b);

✄ Increased latency;

✄ Packet losses.

d

Routes towards d :

b

P ′

1

P ′

2

Old: P1 << P2

New: P ′
1 >> P ′

2

a

LOOP !

5 / 19



Introduction Transient loops Node shut Conclusion

How to prevent them?

Force the routers to update in the right order.

Initially, both a and b reach d through a;

d

a

b

P1

P2

P1 + w(b,a) < P2

6 / 19



Introduction Transient loops Node shut Conclusion

How to prevent them?

Force the routers to update in the right order.

Initially, both a and b reach d through a;

The same change occurs;
d

P ′

1

P ′

2

Old: P1 + w(b,a) < P2

New: P ′
1 > w(a,b) + P ′

2

b

a

6 / 19



Introduction Transient loops Node shut Conclusion

How to prevent them?

Force the routers to update in the right order.

Initially, both a and b reach d through a;

The same change occurs;

Yet this time b updates first;
d

P ′

1

P ′

2

Old: P1 + w(b,a) < P2

New: P ′
1 > w(a,b) + P ′

2

b

a

6 / 19



Introduction Transient loops Node shut Conclusion

How to prevent them?

Force the routers to update in the right order.

Initially, both a and b reach d through a;

The same change occurs;

Yet this time b updates first;

Then a, and no loop appears.

d

P ′

1

P ′

2

Old: P1 + w(b,a) < P2

New: P ′
1 > w(a,b) + P ′

2

b

a

6 / 19



Introduction Transient loops Node shut Conclusion

How to prevent them?

Force the routers to update in the right order.

Initially, both a and b reach d through a;

The same change occurs;

Yet this time b updates first;

Then a, and no loop appears.

One goal, several approaches.

d

P ′

1

P ′

2

Old: P1 + w(b,a) < P2

New: P ′
1 > w(a,b) + P ′

2

b

a

6 / 19



Introduction Transient loops Node shut Conclusion

Related works

Ordered FIB [INFOCOM’05, TON’07]

Explicit router update ordering;

Relies on protocol extensions;

Non-incremental deployment;

IGP migration [SIGCOMM’12]

Designed for network-wide migrations;

Requires to maintain two concurrent control planes;

Huge overhead for single link or node modifications;

Metric increment - Link shut [INFOCOM’07, TON’13]

Progressive link weight update;

Suited for single link modifications;

7 / 19



Introduction Transient loops Node shut Conclusion

Related works

Ordered FIB [INFOCOM’05, TON’07]

Explicit router update ordering;

Relies on protocol extensions;

Non-incremental deployment;

IGP migration [SIGCOMM’12]

Designed for network-wide migrations;

Requires to maintain two concurrent control planes;

Huge overhead for single link or node modifications;

Metric increment - Link shut [INFOCOM’07, TON’13]

Progressive link weight update;

Suited for single link modifications;

Extension to node-wide modifications.

7 / 19



Introduction Transient loops Node shut Conclusion

Progressive update

Basic idea

Split up the change into a sequence of loop free updates.

Objectives

Compute a sequence of intermediate updates, such that

there is no transient loop between subsequent updates.

Challenge

Sequences of minimal length (minimal operational impact);

Efficient algorithm (embedded in router OS).

8 / 19



Introduction Transient loops Node shut Conclusion

Illustration: path increment sequence

a

b

c

d

3

5

2 9

2

9 / 19



Introduction Transient loops Node shut Conclusion

Illustration: path increment sequence

Initially, a, b and c reach d through node a.

a

b

c

d

3

5

2 9

2

9 / 19



Introduction Transient loops Node shut Conclusion

Illustration: path increment sequence

Initially, a, b and c reach d through node a.

If a change occur on path P(a, d) increasing its cost to 50. . .

a

b

c

d

3

5

2 9

✁2 50

9 / 19



Introduction Transient loops Node shut Conclusion

Illustration: path increment sequence

Initially, a, b and c reach d through node a.

If a change occur on path P(a, d) increasing its cost to 50, all three

nodes will go through c instead . . .

a

b

c

d

3

5

2 9

✁2 50

9 / 19



Introduction Transient loops Node shut Conclusion

Illustration: path increment sequence

Initially, a, b and c reach d through node a.

If a change occur on path P(a, d) increasing its cost to 50, all three

nodes will go through c instead and transient loops may appear.

a

b

c

d

3

5

2 9

✁2 50
LOOP !

LOOP !

LOOP !

9 / 19



Introduction Transient loops Node shut Conclusion

Illustration: path increment sequence

Initially, a, b and c reach d through node a.

If a change occur on path P(a, d) increasing its cost to 50, all three

nodes will go through c instead and transient loops may appear.

With incremental updates:

d

3

5

2 9

2
a

b

c

2 50

9 / 19



Introduction Transient loops Node shut Conclusion

Illustration: path increment sequence

Initially, a, b and c reach d through node a.

If a change occur on path P(a, d) increasing its cost to 50, all three

nodes will go through c instead and transient loops may appear.

With incremental updates:

Node c could update first;

d

3

5

2 9

✁2 5
a

b

c

2 505

9 / 19



Introduction Transient loops Node shut Conclusion

Illustration: path increment sequence

Initially, a, b and c reach d through node a.

If a change occur on path P(a, d) increasing its cost to 50, all three

nodes will go through c instead and transient loops may appear.

With incremental updates:

Node c could update first;

Then b, d

3

5

2 9

✁2 ✁5 9
a

b

c

2 505 9

9 / 19



Introduction Transient loops Node shut Conclusion

Illustration: path increment sequence

Initially, a, b and c reach d through node a.

If a change occur on path P(a, d) increasing its cost to 50, all three

nodes will go through c instead and transient loops may appear.

With incremental updates:

Node c could update first;

Then b, and a; d

3

5

2 9

✁2 ✁5 ✁9 15
a

b

c

2 505 9 15

9 / 19



Introduction Transient loops Node shut Conclusion

Illustration: path increment sequence

Initially, a, b and c reach d through node a.

If a change occur on path P(a, d) increasing its cost to 50, all three

nodes will go through c instead and transient loops may appear.

With incremental updates:

Node c could update first;

Then b, and a;

So that the transition to 50 will

be loop free for destination d .

d

3

5

2 9

✁2 ✁5 ✁9✚✚15 50
a

b

c

2 505 7 9 13 15

9 / 19



Introduction Transient loops Node shut Conclusion

1 Introduction

2 Transient loops

3 Node shut

4 Conclusion

10 / 19



Introduction Transient loops Node shut Conclusion

The Node Shutdown Problem

Objective: allow an operator to shut a router down

without triggering transient inconsistencies.

11 / 19



Introduction Transient loops Node shut Conclusion

The Node Shutdown Problem

Objective: allow an operator to shut a router down

without triggering transient inconsistencies.

Simple solution: shut down each link

one by one

✄ Number of intermediate steps

proportional to the node degree

11 / 19



Introduction Transient loops Node shut Conclusion

The Node Shutdown Problem

Objective: allow an operator to shut a router down

without triggering transient inconsistencies.

Simple solution: shut down each link

one by one

✄ Number of intermediate steps

proportional to the node degree

+x1, y1

11 / 19



Introduction Transient loops Node shut Conclusion

The Node Shutdown Problem

Objective: allow an operator to shut a router down

without triggering transient inconsistencies.

Simple solution: shut down each link

one by one

✄ Number of intermediate steps

proportional to the node degree

+x1, y1
+x2, y2

11 / 19



Introduction Transient loops Node shut Conclusion

The Node Shutdown Problem

Objective: allow an operator to shut a router down

without triggering transient inconsistencies.

Simple solution: shut down each link

one by one

✄ Number of intermediate steps

proportional to the node degree

+x1, y1
+x2, y2

+x3, y3

11 / 19



Introduction Transient loops Node shut Conclusion

The Node Shutdown Problem

Objective: allow an operator to shut a router down

without triggering transient inconsistencies.

Simple solution: shut down each link

one by one

✄ Number of intermediate steps

proportional to the node degree

+x1, y1
+x2, y2

+x3, y3
+x4, y4

11 / 19



Introduction Transient loops Node shut Conclusion

The Node Shutdown Problem

Objective: allow an operator to shut a router down

without triggering transient inconsistencies.

Simple solution: shut down each link

one by one

✄ Number of intermediate steps

proportional to the node degree

+x1, y1
+x2, y2

+x3, y3
+x4, y4

×

8 intermediate steps

11 / 19



Introduction Transient loops Node shut Conclusion

The Node Shutdown Problem

Objective: allow an operator to shut a router down

without triggering transient inconsistencies.

Simple solution: shut down each link

one by one

✄ Number of intermediate steps

proportional to the node degree

Better solution: benefit from an

existing OSPF / IS-IS feature

✄ Simultaneous weight modifications

+x1, y1
+x2, y2

+x3, y3
+x4, y4

×

8 intermediate steps

11 / 19



Introduction Transient loops Node shut Conclusion

The Node Shutdown Problem

Objective: allow an operator to shut a router down

without triggering transient inconsistencies.

Simple solution: shut down each link

one by one

✄ Number of intermediate steps

proportional to the node degree

Better solution: benefit from an

existing OSPF / IS-IS feature

✄ Simultaneous weight modifications

+x1, y1
+x2, y2

+x3, y3
+x4, y4

×

8 intermediate steps

+x′

1
+x′

2

+x′

3
+x′

4

11 / 19



Introduction Transient loops Node shut Conclusion

The Node Shutdown Problem

Objective: allow an operator to shut a router down

without triggering transient inconsistencies.

Simple solution: shut down each link

one by one

✄ Number of intermediate steps

proportional to the node degree

Better solution: benefit from an

existing OSPF / IS-IS feature

✄ Simultaneous weight modifications

+x1, y1
+x2, y2

+x3, y3
+x4, y4

×

8 intermediate steps

+x′

1
, y′

1
+x′

2
, y′

2

+x′

3
, y′

3
+x′

4
, y′

4

11 / 19



Introduction Transient loops Node shut Conclusion

The Node Shutdown Problem

Objective: allow an operator to shut a router down

without triggering transient inconsistencies.

Simple solution: shut down each link

one by one

✄ Number of intermediate steps

proportional to the node degree

Better solution: benefit from an

existing OSPF / IS-IS feature

✄ Simultaneous weight modifications

+x1, y1
+x2, y2

+x3, y3
+x4, y4

×

8 intermediate steps

+x′

1
, y′

1
+x′

2
, y′

2

+x′

3
, y′

3
+x′

4
, y′

4

×

2 intermediate steps

11 / 19



Introduction Transient loops Node shut Conclusion

Towards Multi-Dimensional Increments

a b

c d

e

f g

8

6

13

1

2

1

14

1

1

12 / 19



Introduction Transient loops Node shut Conclusion

Towards Multi-Dimensional Increments

a b

c d

e

f g

×

8

6

13

1

2

1

14

1

1

12 / 19



Introduction Transient loops Node shut Conclusion

Towards Multi-Dimensional Increments

a b

c d

e

f g

×

8

6

13

1

2

1

14

1

1

LOOP !

12 / 19



Introduction Transient loops Node shut Conclusion

Towards Multi-Dimensional Increments

a b

c d

e

f g

×

8

6

13

1

2

1

14

1

1

LOOP !

Vector of minimum increments such that a node

x uses a new path, not through n, to reach d.

∆n
d (x)[i] = C′(x ,d)− C(x , i ,d)

12 / 19



Introduction Transient loops Node shut Conclusion

Towards Multi-Dimensional Increments

a b

c d

e

f g

13

2

8

1

14

6

1

1

1

Vector of minimum increments such that a node

x uses a new path, not through n, to reach d.

∆n
d (x)[i] = C′(x ,d)− C(x , i ,d)

∆d
a (f ) =

(

14 − (1 + 1 + 1 + 6)
)

12 / 19



Introduction Transient loops Node shut Conclusion

Towards Multi-Dimensional Increments

a b

c d

e

f g

13

2

1

6

14

8

1

1

1
Vector of minimum increments such that a node

x uses a new path, not through n, to reach d.

∆n
d (x)[i] = C′(x ,d)− C(x , i ,d)

∆d
a (f ) =

(

14 − (1 + 1 + 1 + 6)
14 − (1 + 1 + 1 + 8)

)

12 / 19



Introduction Transient loops Node shut Conclusion

Towards Multi-Dimensional Increments

a b

c d

e

f g

13

2

14

8

6

1

1

1+5

1+3
Vector of minimum increments such that a node

x uses a new path, not through n, to reach d.

∆n
d (x)[i] = C′(x ,d)− C(x , i ,d)

∆d
a (f ) =

(

14 − (1 + 1 + 1 + 6)
14 − (1 + 1 + 1 + 8)

)

=

(

5
3

)

12 / 19



Introduction Transient loops Node shut Conclusion

Towards Multi-Dimensional Increments

a b

c d

e

f g

13

2

14

8

6

1

1

1+7

1+5
Vector of minimum increments such that a node

x uses a new path, not through n, to reach d.

∆n
d (x)[i] = C′(x ,d)− C(x , i ,d)

∆d
a (f ) =

(

14 − (1 + 1 + 1 + 6)
14 − (1 + 1 + 1 + 8)

)

=

(

5
3

)

∆d
a (g) =

(

15 − 8
15 − 10

)

=

(

7
5

)

12 / 19



Introduction Transient loops Node shut Conclusion

Modeling Loops as Vectorial Constraints

a b

c d

e

f g

×

8

6

13

1

2

1

14

1

1

L1

∆d
a (f ) =

(

5
3

)

∆d
a (g) =

(

7
5

)

(d , c)

(d , b)

0 2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

Constraint c associated to a given a loop L.

c := (min
∀x∈L

(∆(x)),max
∀x∈L

(∆(x)))

13 / 19



Introduction Transient loops Node shut Conclusion

Modeling Loops as Vectorial Constraints

a b

c d

e

f g

×

8

6

13

1

2

1

14

1

1

L1

∆d
a (f ) =

(

5
3

)

∆d
a (g) =

(

7
5

)

(d , c)

(d , b)

0 2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

Constraint c associated to a given a loop L.

c := (min
∀x∈L

(∆(x)),max
∀x∈L

(∆(x)))

c1 =

((

5

3

)

13 / 19



Introduction Transient loops Node shut Conclusion

Modeling Loops as Vectorial Constraints

a b

c d

e

f g

×

8

6

13

1

2

1

14

1

1

L1

∆d
a (f ) =

(

5
3

)

∆d
a (g) =

(

7
5

)

(d , c)

(d , b)

0 2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

Constraint c associated to a given a loop L.

c := (min
∀x∈L

(∆(x)),max
∀x∈L

(∆(x)))

c1 =

((

5

3

)

,

(

7

5

))

13 / 19



Introduction Transient loops Node shut Conclusion

Modeling Loops as Vectorial Constraints (2)

a b

c d

e

f g

×

8

6

13

1

2

1

14

1

1

L2

L3

(d , c)

(d , b)

0 2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

14 / 19



Introduction Transient loops Node shut Conclusion

Modeling Loops as Vectorial Constraints (2)

a b

c d

e

f g

8

6

13

1

2

1

14

1+8

1−6
∆3

2
(e) =

(

8
0

)

(d , c)

(d , b)

0 2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

14 / 19



Introduction Transient loops Node shut Conclusion

Modeling Loops as Vectorial Constraints (2)

a b

c d

e

f g

8

6

13

1

2

1

14

1+12

1−2
∆3

2
(e) =

(

8
0

)

∆3
2
(f ) =

(

12
0

)

(d , c)

(d , b)

0 2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

14 / 19



Introduction Transient loops Node shut Conclusion

Modeling Loops as Vectorial Constraints (2)

a b

c d

e

f g

8

6

13

1

2

1

14

1+14

1+0
∆3

2
(e) =

(

8
0

)

∆3
2
(f ) =

(

12
0

)

∆3
2
(g) =

(

14
0

)

(d , c)

(d , b)

0 2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

14 / 19



Introduction Transient loops Node shut Conclusion

Modeling Loops as Vectorial Constraints (2)

a b

c d

e

f g

×

8

6

13

1

2

1

14

1

1

L2

L3

∆3
2
(e) =

(

8
0

)

∆3
2
(f ) =

(

12
0

)

∆3
2
(g) =

(

14
0

)

(d , c)

(d , b)

0 2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

c2 =

((

8

0

)

,

(

12

0

))

14 / 19



Introduction Transient loops Node shut Conclusion

Modeling Loops as Vectorial Constraints (2)

a b

c d

e

f g

×

8

6

13

1

2

1

14

1

1

L2

L3

∆3
2
(e) =

(

8
0

)

∆3
2
(f ) =

(

12
0

)

∆3
2
(g) =

(

14
0

)

(d , c)

(d , b)

0 2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

c2 =

((

8

0

)

,

(

12

0

))

c3 =

((

12

0

)

,

(

14

0

))

14 / 19



Introduction Transient loops Node shut Conclusion

Modeling Loops as Vectorial Constraints (3)

c4 =

((

1

8

)

,

(

4

11

))

(d , c)

(d , b)

0 2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

An update sequence s avoids a loop L if and only if s contains

at least one vector meeting the corresponding constraint.

15 / 19



Introduction Transient loops Node shut Conclusion

Modeling Loops as Vectorial Constraints (3)

c4 =

((

1

8

)

,

(

4

11

))

c5 =

((

2

9

)

,

(

5

12

))

(d , c)

(d , b)

0 2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

An update sequence s avoids a loop L if and only if s contains

at least one vector meeting the corresponding constraint.

15 / 19



Introduction Transient loops Node shut Conclusion

Defining Safe Weight Increment Sequences

Greedy Backward Algorithm (GBA)

At each step, retrieve the maximum
value on each index among the lower
bounds of the remaining constraints.

(d , c)

(d , b)

0 2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

16 / 19



Introduction Transient loops Node shut Conclusion

Defining Safe Weight Increment Sequences

Greedy Backward Algorithm (GBA)

At each step, retrieve the maximum
value on each index among the lower
bounds of the remaining constraints.

Sequence:

(d , c)

(d , b)

0 2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

16 / 19



Introduction Transient loops Node shut Conclusion

Defining Safe Weight Increment Sequences

Greedy Backward Algorithm (GBA)

At each step, retrieve the maximum
value on each index among the lower
bounds of the remaining constraints.

Sequence:

(d , c)

(d , b)

Loop free transition bound

0 2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

16 / 19



Introduction Transient loops Node shut Conclusion

Defining Safe Weight Increment Sequences

Greedy Backward Algorithm (GBA)

At each step, retrieve the maximum
value on each index among the lower
bounds of the remaining constraints.

Sequence:

1 c3, c4, c5

1

(d , c)

(d , b)

Loop free transition bound

0 2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

16 / 19



Introduction Transient loops Node shut Conclusion

Defining Safe Weight Increment Sequences

Greedy Backward Algorithm (GBA)

At each step, retrieve the maximum
value on each index among the lower
bounds of the remaining constraints.

Sequence:

1 c3, c4, c5

1

(d , c)

(d , b)

Loop free transition bound

0 2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

16 / 19



Introduction Transient loops Node shut Conclusion

Defining Safe Weight Increment Sequences

Greedy Backward Algorithm (GBA)

At each step, retrieve the maximum
value on each index among the lower
bounds of the remaining constraints.

Sequence:

1 c3, c4, c5

2 c1, c2

1

2

(d , c)

(d , b)

Loop free transition bound

0 2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

16 / 19



Introduction Transient loops Node shut Conclusion

Defining Safe Weight Increment Sequences

Greedy Backward Algorithm (GBA)

At each step, retrieve the maximum
value on each index among the lower
bounds of the remaining constraints.

Sequence:

1 c3, c4, c5

2 c1, c2

1

2

(d , c)

(d , b)

Loop free transition bound

0 2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

16 / 19



Introduction Transient loops Node shut Conclusion

Defining Safe Weight Increment Sequences

Greedy Backward Algorithm (GBA)

At each step, retrieve the maximum
value on each index among the lower
bounds of the remaining constraints.

Sequence:

1 c3, c4, c5

2 c1, c2

1

2

(d , c)

(d , b)

Loop free transition bound

0 2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

Given a set of loop-constraints, GBA computes a minimal sequence

of intermediate increments preventing convergence loops.

16 / 19



Introduction Transient loops Node shut Conclusion

Sequence Lengths on a Real ISP Network

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14+
Number of intermediate vectors

80

85

90

95

100

C
D
F 
(%

)

✄ Graph with more than 1000 nodes and 4000 links;

✄ 90% of the nodes requiring at most 3 intermediate steps.

17 / 19



Introduction Transient loops Node shut Conclusion

1 Introduction

2 Transient loops

3 Node shut

4 Conclusion

18 / 19



Introduction Transient loops Node shut Conclusion

Conclusion

Minimal solution;

Time efficient algorithm;

Generic approach;

19 / 19



Introduction Transient loops Node shut Conclusion

Conclusion

X Minimal solution;

✄ Shortest possible sequences;

Time efficient algorithm;

Generic approach;

19 / 19



Introduction Transient loops Node shut Conclusion

Conclusion

X Minimal solution;

✄ Shortest possible sequences;

X Time efficient algorithm;

✄ Polynomial complexity;

Generic approach;

19 / 19



Introduction Transient loops Node shut Conclusion

Conclusion

X Minimal solution;

✄ Shortest possible sequences;

X Time efficient algorithm;

✄ Polynomial complexity;

X Generic approach;

✄ Covers the single link problem.

19 / 19



Introduction Transient loops Node shut Conclusion

Conclusion

X Minimal solution;

✄ Shortest possible sequences;

X Time efficient algorithm;

✄ Polynomial complexity;

X Generic approach;

✄ Covers the single link problem.

Future works

✄ Implementation in Quagga;

✄ Evaluation in a real network.

19 / 19



Introduction Transient loops Node shut Conclusion

Thank you for your attention.

19 / 19



Appendix

5 Appendix

20 / 19



Appendix

Transient loop induced by route flapping

→ RSPDAG1(4)
Intermediate routing state towards 4

considering the first vector

0

1 2 3

4

a

b c d

e

+7 +2
+3

+0







7
2
3
0







SGBA =







7
2
3
0






,







9
9
8
0







0

1 2 3

4

a

b c d

e

transient flapping edge (on 0)

→ RSPDAG2(4)
Intermediate routing state towards 4

considering the second vector

0

1 2 3

4

a

b c d

e

+9
+9

+8

+0







9
9
8
0







SFF1 =







3
2
3
0






,







7
4
5
0






,







9
9
8
0






SFF2 =







7
2
3
0






,







9
9
8
3







21 / 19


	Introduction
	Transient loops
	Node shut
	Conclusion
	Appendix

