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Chapter1 Introduction

Internet outages are known as frequent and destructive, their impacts on service performance
is not negligible. But first, how to formally define and describe them? In [1], Giuseppe Aceto
et al. define an Internet outage as ‘the particular condition in which the network lies when
one or multiple network elements located in a specific geographical area either do not work
properly or are not reachable due to intentional or accidental events.’

In [17], the authors unveiled that persistent reachability problems affected more than 10
000 prefixes, with one in five of the events lasting over 10 hours. Moreover, Internet outages
can happen for a wide variety of reasons, including attacks, misconfigurations, or even natural
disasters. This creates a need for systems and approaches to detect and mitigate Internet
outages.

Table 1: Main metrics that are used to measure network performances

Indicator Metric Analyzed objects Tool

Delay + (One or two)-way latency owamp, ping
Jitter + Delay variations QosMet
Loss Ratio * Ratio of successful over total number of deliveries ping, QosMet
Capacity min Amount of data that can be transferred over a link iperf
Topology composition Determining the path from a source to a destination traceroute

An outage will be detected if some of the network’s components do not work properly.
The need to specify performance indicators arises from this, as one needs to be able to
evaluate a network based on its own characteristics. These performance indicators should
be able to assert both a network’s state and its level of performance. Table 1 gives an
overview of standard performance indicators. For example, the analysis of the delay is based
on an additive metric considering positive values. Its purpose is to estimate the time it takes
to reach a destination (and generally the way back also accounts in this analysis as it is
not straightforward to discriminate the two and time synchronization limitations can also
interfere). owamp and ping are most used tools for measuring delay. This indicator, as the
other presented in the Table, can be used to detect outages since a significant deviation from
the normal trend may indicate that an outage is occurring. With delays, an outage might be
detected when the time to reach a destination significantly increases (possibly to a pseudo
infinite duration modeled with an arbitrary timer).

The goal of this chapter is to describe the context in which my internship took place.
Section 1 is going to describe the different actors that were involved in this internship. Sec-
tion 2 will define the objective and the different missions of this internship. Lastly, Section 3
will describe the structure of this document.
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1. Hosting structures and actors

My internship is a collaboration between the ICube laboratory1 and the Internet Initia-
tive Japan Innovation Institute2 (IIJ-II). The Center for Applied Internet Data Analysis3

(CAIDA) is also involved as they provide us with the data that is at the basis of our study.

1.1 The ICube laboratory

ICube is a French research laboratory that focuses on engineering sciences, computer sciences,
and imaging. There are four departments:

1. Computer science department

2. Imaging, robotics, remote sensing and biomedical department

3. Solid-state electronics, systems and photonics department

4. Department of mechanics

The Computer science department where I started my internship regroups six different
teams, including the Network Research Group4. This group is then subdivided into two
different research topics: the Internet of Things and Core Networks.

My local supervisors (Prof. Cristel Pelsser5 and Pascal Mérindol6) are both part of the
Core Networks theme.

1.2 Internet Initiative Japan Innovation Institute

IIJ is a Japanese Internet Service Provider (ISP) with more than 3000 employees. IIJ Inno-
vation Institute is a division of IIJ that pursues core Internet technologies. Their goal is to
create innovative technologies while following three missions:

1. Innovation: developing new fundamental technologies essential to the next generation
Internet.

2. Incubation: supporting entrepreneurs with innovative technologies to build up their
business.

3. Education: contributing to education for bringing up innovative engineers.

As a branch of IIJ, the members of the Innovation Institute get to interact with the dif-
ferent divisions to analyze their data and to provide feedback into their solutions. They work
on several projects, including network Measurement and Analysis. Dr. Romain Fontugne7,
my third supervisor, works on this project. I was also a part of the innovation group.

1.3 CAIDA

CAIDA conducts network research and builds infrastructure to support large-scale data col-
lection and redistribution. They provide valuable datasets and tools that are extensively
used by the scientific research community working in the Internet field. In our study, we use
one of their numerous dataset in particular, the Internet Outage Detection and Analysis8

1https://icube.unistra.fr/
2https://www.iij-ii.co.jp/
3https://www.caida.org/home/
4http://icube-reseaux.unistra.fr/fr/index.php/Accueil
5https://clarinet.u-strasbg.fr/~pelsser/
6https://dpt-info.u-strasbg.fr/~merindol/
7https://www.iij-ii.co.jp/en/members/romain.html
8https://www.caida.org/projects/ioda/
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(IODA), whose main purpose is to identify macroscopic internet outages.

2. Problem statement

The inevitability and expensiveness of network outages is what drives the study of outage
detection techniques forward. Combining the increase in size and in complexity both in terms
of services and technologies created a need to systematize and to analyze different outage
detection techniques. The study of IBR provides a unique opportunity to study network
outages since it is a pervasive data source that receives traffic from most of the Internet [5].

The objective of this report is twofold. First, it aims at providing an overview of the
potential of using Internet Background Radiation as a data source to detect outages. Second,
it describes our implementation of an adaptive solution that monitors Internet-wide outages.
Our solution tries to identify network outages thanks to a statistical analysis of the IBR data.
It compares the ground collected data to artificial predictions in order to look for significant
shifts that characterizes outages.

3. Outline

To evaluate and position the utility of the IBR dataset as an Internet-wide outage detec-
tion data source, Chapter 2 describes the scientific context behind its use, belonging to the
field of IP monitoring and measurement. Chapter 3 describes our contributions, in particular
the method and the outage detection tool that we propose.
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Chapter2 Scientific Context

Outage detection can be achieved with different measurement techniques analyzing various
subset of performance indicators. These techniques can be divided into several families which
are illustrated on figure 1. The following sections aim to introduce the main methods used
in each family. In particular, as we opt for a traffic based method that passively monitors
the data plane, we will provide a detailed background for this family of tools.

Figure 1: Tree of the different families of outage detection techniques

Family Tool

Outage Detection Techniques

Traffic-based

Hybrid
Monitoring

Active/passive
monitoring

Passive
Monitoring

Control Plane

BGP collectors,
IGP logs

Data Plane

Traffic volume,
IBR

Active
Monitoring

Pings,
traceroute

Non traffic-based

Non-structured

Mailing
lists

Semi-structured

Error
logs

Structured

Trouble
tickets

Section 1 is going to describe non-traffic based approaches, while Section 2 is going to
describe traffic-based approaches. Lastly, Section 3 will describe how time series can be
modeled and how predictions are evaluated.

1. Non traffic-based approaches

Non-traffic based approaches use data from other sources than passive or active traffic
to study outages. There are three types of non-traffic based approaches: structured, semi-
structured, and non-structured.

Approaches using structured objects take advantage of their clearly-defined structures to
extract and analyze the information that is contained inside them. An example of such an
object is trouble tickets, which have been used in papers such as [20] to correlate network
events with human-made tickets. An example of a ticket can be found on figure 2, where
information such as the beginning, the end, and the description of a network-related event can
be found. In this example, one can observe the addition of a new link that is presented as a
minor maintenance event with a limited impact on the service. Semi-structured data sources
range from error and activity logs to customer emails. Non-structured data sources comprise
technical blogs and mailing lists (e.g. NANOG). In [3], the authors used Natural Language
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Processing (NLP) on the outages mailing list [23] to determine which network entities were
likely to be part of a network outage.

Figure 2: Example of a network ticket issued by a Network Operating Center

Non-traffic based approaches are used as complementary data sources, but they are not
sufficient on their own. Indeed, the fact that they often are human-made implies that they
are potentially error-prone and might require manual processing to extract relevant data.
However, the fact that they contain information about user-related metrics as opposed to
network-related ones contributes to their usefulness. Indeed, each indicator can be subdivided
into multiple indicators that might have a different meaning to different users. For example,
the loss ratio can both be applied to network-related indicators with the loss ratio of a link,
and to user-related indicators with the end-to-end loss ratio. Network-related indicators tend
to study the Quality of Service of a network whereas user-related indicators study the Quality
of Experience. A study of the difference and of the relationship between these two can be
found in [12].

Besides, such a piece of information is useful for example to train automatic methods that
we will describe later. As such, those source of data are also valuable as ground truth data
necessary to validate statistical tools.

The next section describes traffic-based approaches, which draw from data that has been
gathered on the networks themselves. This is the most popular approach used by the research
community to automate outage detection.

2. Traffic-based approaches

Traffic-based approaches use data that originates from network measurements. These
measurements are performed by network devices. This family can be divided into three
categories as illustrated on figure 1:

• Active Monitoring, that injects purposely forged synthetic measurements into a net-
work;

• Passive Monitoring, that takes advantage of the real traffic-related information that is
already stored or captured on network devices;
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• Hybrid Monitoring, which is a combination of both active and passive monitoring.

The following sections describe the differences between the three, and discuss how re-
searchers have leveraged these mechanisms to detect outages.

2.1 Active Monitoring

Active monitoring techniques will insert artificial traffic into existing networks in order to
study its characteristics and behavior in general.

These methods can be used in order to test the reachability of a destination or to compute
end-to-end statistics such as latency or loss in real-time. The data is crucial to determine
if a network meets certain criteria, which are also referred to as Service Level Agreements
(SLA). Active monitoring can also detect non-transient faults, which cannot be recovered by
routing protocols. These faults occur when physical links fail or when network devices have
faulty configurations, and can only be resolved by the intervention of a network operator.

Most active monitoring approaches are based on variants of ping and traceroute, and often
rely on a set of vantage points (i.e. the devices that perform the measurements) that can be
distributed across different networks.

RIPE Atlas [27] is a network measurement network that is composed of over 10 000 probes.
It uses active measurements to study the reachability, the delay and the path taken by packets
originating from one of their vantage points. The measurements performed by these vantage
points are mostly scheduled, but it is also possible to perform user-defined measurements.
These measurements can then be analyzed to detect outages. For example, Disco [32] uses
the long-running TCP connections of RIPE to identify bursts of disconnections.

Trinocular [26] is another outage detection system that can use a single machine to track
the connectivity of 3.4 million /24 networks. The failure to reach a destination will increase
the likelihood of the address block to be down, which means that more messages are going
to be sent to determine if the block is truly down, and if an outage is occurring or not.

Thunderping [31] is a measurement tool that measures the connectivity of residential
Internet hosts before, during, and after forecast periods of severe weather using data from
the US National Weather Service. The authors found that failures are four times more likely
during thunderstorms and two times more likely during rain by applying unrelated data
sources to outage detection.

NetDiagnoser [10] constructs a topology from traceroute-like measurements to determine
if an outage is occurring by determining the state of links using binary tomography. Binary
tomography can be summarized as a technique which assumes either a ‘good’ or ‘bad’ state
for links, and tries to identify the smallest set of links that corresponds to the unsuccessful
end-to-end measurements.

In summary, active monitoring is useful because it is a valuable method to gather in-
stantaneous knowledge on foreign networks (i.e. those for which one cannot have access to
internal privileges such as packet capture or real time routing configurations) using tools that
are widely available. However, it adds an additional burden on existing networks by adding
control traffic that might decrease a network’s users quality of experience. Additionally, some
networks might prevent one from measuring their performances through filtering in order to
protect their privacy. Thus the quality of one’s measurements might be hindered by factors
that are outside one’s control.

2.2 Passive Monitoring

Passive monitoring methods only rely on existing traffic. Generally speaking, they use the
traffic-related data that is already stored or can be captured on some internal networking
devices. Analyzing real user-traces ensures that the inferred statistics correspond to real
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traffic, thus granting a view of a network’s current state. The generated data may then be
aggregated in order to extract behavioral patterns.

There are two sub-families of passive monitoring: control plane and data plane. The
following sections are going to describe how these two different abstractions can be used to
detect outages.

2.2.1 Control plane

Control plane traffic refers to routing-related information including the signaling in particular.
Inter-domain routing data is gathered from the Border Gateway Protocol (BGP), the de

facto inter-domain routing protocol. Global Internet dynamics can be studied with different
BGP databases such as Routeviews [29], RIPE RIS [28], or the BGP looking glasses, which
provide network routing information. Indeed, the disappearance of prefixes that have been
announced in BGP signifies that these prefixes cannot be reached anymore, which is indicative
of a network outage.

Intra-domain routing data is gathered from Interior Gateway Protocols (IGP) such as
Intermediate-System to Intermediate-System (IS-IS) or Open Shortest Path First (OSPF).
Intra-domain outages can be detected when a subset of links or network devices cease to
operate properly and start to have a negative effect on a network’s performances. There is
less public data from IGP protocols available because the competitiveness of different ISPs
desensitizes sharing such information.

Control plane measurement tools include BGP eye [33], a tool for visualization-aided
root-cause analysis of BGP anomalies, or I-Seismograph [18], an Internet seismograph that
quantifies the impact of BGP updates on the entire Internet.

Since the control plane can be consistent and outages still occur (as it is the case for
persistent ones in particular), one also needs to look at the data-plane that is the closest
plane to the user experience.

2.2.2 Data plane

Data plane traffic refers to the study of the traffic that transits through the considered
network.

It offers a different point of view since a faulty data plane does not necessarily comes
from a faulty control plane. This can take the form of non-transient faults that have been
mentioned earlier. Another example would be what happened in Syria in 2011 [9], where the
BGP (i.e. control plane) signalization did not change, even if the entire traffic had disappeared
due to packet filtering mechanisms that were put in place. These matters are discussed in [6],
where Randy Bush et al. highlight how data plane measurements can differ from control plane
measurements.

Data plane measurement tools include FACT [30], a system that tracks connectivity
problems by using flow-level data. A flow is defined by Augustin et al. in [25] as a set
of packets that share the same flow-identifier, which is a 5-tuple containing the IP source
address, IP destination address, protocol, source port, and destination port. Other tools such
as Disco [32] or Tartiflette [13] rely on traces from RIPE Atlas [27] to measure data plane
traffic without injecting additional traffic into existing networks.

An original data source that can be used to detect outages is the Internet Background
Radiation (IBR). It consists in nonproductive traffic sent to a collection of allocated, routable,
but unused IP addresses (i.e., the hosts using those IP do not trigger any communications by
themselves). These IP blocks are commonly referred to as Network Telescopes or as Darknets.
IBR has first been characterized in 2004 by Pang et al. [24]. More recently, it has been also
studied in 2010 [36] by Benson et al. and in 2015 [5] by Wustrow et al.

The way IBR can be used to detect outages is by recording the traffic that reaches a
network telescope and by looking at its properties. In practice, a network telescope can be
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Figure 3: Illustration of how backscatter (i.e. spoofed) traffic can reach network telescopes.
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easily setup by any ISP as a sub-block of its larger IP prefix. The sub-block thus simply
consists in contiguous IP that are not — yet — used by the given ISP (neither for transit
nor stub sub-networks). Then, the ISP just has to capture all the traffic destined to this
sub-block. By definition, the traffic destined to such IP addresses has not been solicited by
any internal hosts belonging to the ISP.

This data source can be divided into two main categories: benign and malicious traffic.
Benign traffic is the result of software or hardware errors, such as bit-flipping or hard-coded
IP addresses. Malicious traffic is composed of several kinds of attack attempts. It can take
the form of scans that (more or less) randomly crawl through the Internet address space in
the hope of finding vulnerable targets. It can also be the result of backscatter traffic (i.e. due
to spoofing). Backscatter traffic is created when an attacker sends a request to a target with
a fake source IP address (step 1.), which means that the response will be routed towards
the fake source IP address instead (step 2.). In turn, it means that attackers that chose
an IP address that belongs to a network telescope will indirectly generate traffic towards it.
This process is illustrated on figure 3. Obviously, the malicious traffic can be used to study
network attacks such as worm and virus propagation [35, 15, 16], or Distributed Denial of
Service (DDoS) attacks [11].

A first strategy to perform an analysis at a coarser grain than packet-er packet would
be to look at the flow-level information that is contained inside the inbound traffic. In [4],
the authors use the retransmission behavior of TCP and the TTL1 to determine if packets
belonging to a TCP flow had been lost or if packets took a different path to reach the network
telescope (i.e. arriving with a different TTL).

Another option is to consider where the incoming traffic is originating from. Geolocation
services such as Maxmind Geolite [19] or Net Acuity [21] can be used to determine the spatial
location of the inbound traffic by using its source IP address. There are multiple ways to
aggregate traffic that is coming from a single location, namely the number of bytes, the
number of packets, and the number of unique source IP addresses. The first two methods are
self-explanatory. The number of unique source IP addresses [9] is defined as the number of
IP addresses originating from the same location that contact the network telescope during
a given time interval. This method is superior to the other two to study outages since the
number of unique IP addresses will indicate how many sources contact the network telescope
as opposed to how much traffic reaches it, which means that traffic bursts from the same
location will be ignored while small traffic from a variety of sources will become more visible.
The number of unique source IP addresses can then be used to see if the number of machines
that try to reach the network telescope varies from the usual trend for this geographical
area. For example, figure 4 showcases a severe network disruption that occurred during
the Egyptian revolution in 2011. Three different signals of unique source IP addresses are
plotted: Egypt, South Africa, and Czech Republic. These two other countries have been
chosen since they generate a similar quantity of traffic and because they are on a similar
timezone, which causes the day/night cycle to align itself with the other signals. The traffic

1TTL refers to the time to leave field in the IP header. It is used as a counter to control the maximal
remaining number of hops of a packet before it is discarded.
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Figure 4: Illustration of how the Egyptian traffic collapsed during the Egyptian revolution
in 2011 while other traffic sources stayed consistent. (source: ioda.caida.org)

collapses around the 28th of January, which is when packet filtering mechanisms were put
into place [9]. However, the other signals were not affected by the disruption resulting from
such a brutal filtering. Indeed, these two other signals continue to generate a quantity of
traffic that is aligned with the one of the previous days. Even the more general characteristics
of the traffic (e.g. its variability in particular) remain almost constant. Hence, the analysis
of such a traffic is both capable of identifying that an outage occurred and to localize where
it happened.

Besides, the usage of IBR to detect outages is particularly pertinent since it is pervasive.
Indeed, [36, 24] show that the amount of IBR that reaches network telescopes is considerable,
incessant, and originates from a variety of applications. In [5], Benson et al. performed a
spatial analysis where they determined that IBR provided an Internet-wide view. As a
point of fact, all countries, except for 3 with a population lower than 4000 inhabitants, and
more than half of all ASes have been observed in their dataset. Note that half of the ASes
that do not show up in the dataset are small, as they only advertise a /24 prefix, while 86%
of ASes advertise a /16 or more are visible in their dataset. A fifth of the invisible large ASes
are unused blocks that belong to the US government.

The temporal analysis shown on figure 5 illustrates how the median time between obser-

Figure 5: Temporal analysis of how frequently
different network entities contact the network
telescope [5]

.
Figure 6: Study of the relationship between
network telescope size and number of observed
/24s [5]
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vations is lower than 1 minute for over 90% of countries, and is lower than 10 minutes for
about 75% of the ASes. It means that most networks frequently generate IBR traffic
in particular when considering a sufficient level of aggregation (i.e. a sufficiently coarse grain).
It also illustrates the fact that single IP addresses do not contact the network telescope at
the same frequency.

The quantity of observed source prefixes naturally depends on the size of the network
telescope. Figure 6 illustrates the relationship between the size of the network telescope and
the number of observed /24s. The first observation is that increasing the size of the network
telescope increases the number of revealed /24s (the correlation seems sub-linear). However,
this figure also illustrates the fact that two network telescopes of the same size can receive
traffic from a significantly different number of /24s (as showed by the size of the boxplots).
The quantitative analysis on figure 7 plots the proportion of countries and ASes that send
traffic to the CAIDA UCSD network telescope [34]. This network telescope receives traffic
from approximately 85% of countries over the course of a week (figure 7a). However, 85%
of ASes do not send any traffic at all (figure 7b). Note that a method to collect more IBR
traffic has been devised in [14], where Glatz and Dimitropoulos developed a way to record
and analyze IBR on a live network by using flow-based classification.

Figure 7: CDF of the median number of unique IP addresses received every five minutes over
the course of a week
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(b) Autonomous Systems
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To summarize, IBR traffic is ubiquitous, to a point where it can be used to detect and
analyze large-scale network events. Indeed, it is continually sent by a variety of sources
all around the world, which makes it a great data source to make opportunistic worldwide
Internet measurements. In particular, we aim to use it for efficiently detecting outages.
Put in simple words, when this traffic decreases significantly, it is likely that an abnormal
phenomena has occurred.

The next sections are going to describe the exact structure of the UCSD Network Tele-
scope [34], and how we can analyze collected time series to detect outages.

3. Time series analysis and forecasting

This section gives an overview of the different methods that could be used to detect
outages using IBR data using time series analysis and forecasting, a field focused on the
extraction of statistics from time series. A time series is a sequence of data points indexed
with time.

Time series are difficult to forecast because there are no causal variables associated with
the data. Additionally, some components such as seasonality or random variation cannot
always be easily identified.

But first, we need a way to evaluate the accuracy of our predictive model. Generally, the
data is separated into two parts: the training set, which is used to create the model, and the
validation set, which is used to evaluate the model. Models are evaluated using a regression
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metric. There are a large number of different regression metrics, but the most well-known are
the Mean Forecast Error (MFE), Mean Absolute Error (MAE), Mean Absolute Percentage
Error (MAPE), Mean Squared Error (MSE), and the Root Mean Squared Error (RMSE).
Their formal definitions are as follows:

MFE :
1

n

n∑
t=1

et MAE :
1

n

n∑
t=1

|et| MAPE :
1

n

n∑
t=1

∣∣∣∣etyt
∣∣∣∣ MSE :

1

n

n∑
t=1

e2t RMSE :
√
MSE,

Where et is the actual value minus the predicted value, and n is the size of the validation
set. The MFE, also known as forecast bias, shows the direction of the error (i.e. if the
prediction is above or below the actual value). The best possible error with MFE is 0, but
a problem with this metric is that the error cancels itself out since positive and negative
numbers are added. It results in a bias since an error of 0 does not necessarily mean that the
predicted values were equal to the actual ones. Additionally, it makes the MFE score harder
to interpret since the extent at which the effects of positive and negative errors canceled
out is not known. In contrast, the MAE uses absolute errors instead of signed ones. As
a result, an MAE score close to 0 will indicate that the predictions were very accurate. A
MAE score of x is interpreted has the fact that, on average, a prediction had a distance of
x to the actual value. However, the distance given the MAE score is relative to the scale of
the signal, whereas the MAPE gives a percentage, which is useful is one wants to compare
different signals at the same scale. The MSE is not scale independent but it adds a feature
that can be beneficial: squaring et penalizes extreme errors, as a large distance between the
real value and the prediction will be further emphasized by squaring. A problem is that a
squared error is difficult to interpret, which is the reason why the RMSE is used. It keeps all
the benefits of using MSE, while it keeps an interpretation similar to that of the MAE score.
A summary of the differences is given in table 2.

There are several techniques that can be used to detect predict time series, including
neural networks, Fourier transform, wavelet transform, and linear statistical methods. A
technique that is computationally cheap is preferred over computationally expensive ones
if one wants to analyze a great number of time series. As a result, neural networks are
considered to be out of scope. Linear statistical methods have commonly been used for time
series analysis due to their model simplicity and because of the relatively low computational
power required. However, one of the necessary conditions for using linear statistical methods
is that the time series needs to be stationary.

Section 3.1 is going to describe stationarity and Section 3.2 contains an overview of the
different linear statistical methods that can be used to predict time series.

3.1 Stationarity

A stationary time series is one whose statistical properties such as mean and variance are
constant over time. It can be assessed using the augmented Dickey-Fuller test. Stationarity
is an assumption that is shared by multiple forecasting processes, as one can assume that

Table 2: Main regression metrics that are used to measure the accuracy of forecasts

MFE MAE MAPE MSE RMSE

Shows the direction of the error 3 7 7 7 7

Is scale indepedent 7 7 3 7 7

Penalizes extreme errors 7 7 7 3 3
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its future statistical properties will be the same in the future. As a result, non-stationary
time series need to be transformed into stationary ones to make accurate predictions and to
be inverted (i.e. moved back to their original scale) to visualize the result. A conventional
way to stationarize a time series is by applying seasonal differencing. A seasonal differencing
process is applied when the difference between an observation and an observation from the
past is computed. In other words,

y′t = yt − yt−d, (2.1)

Where yt is the predicted value, and d indicates the order (i.e. how many observations
ago) of the difference. Differencing can also be expressed with a lag (also known as backshift)
operator:

Lyt = yt−1 (2.2)
y′t = yt − yt−d = yt − Ldyt = (1− Ld)yt,

Where L is a lag operator.
Once the data is differenced, it is possible to invert the operation by performing the

opposite operation:

yt = (1 + Ld)y′t, (2.3)

If the resulting time series if still not stationary it is possible to apply second-order
differencing, which will result in the following:

y′t = (1− Ld′)(1− Ld)yt, (2.4)

Where d and d′ are two different difference orders.

3.2 Linear statistical models

The following models are all assumed to have an independent and identically distributed
error with zero mean and a constant variance σ2, which corresponds to a typical normal
distribution.

The two most common linear time series models in the literature are the Autoregressive
(AR) model and the Moving Average (MA) model.

AR(p), or AR model of order p, estimates the future value of a variable to be a linear com-
bination of p past observations and a random error in addition to a constant. Mathematically,
an AR(p) model can be expressed as [2]:

yt = c+

p∑
i=1

φiyt−i + εt = c+ φ1yt−1 + φ2yt−2 + · · ·+ φpyt−p + εt, (2.5)

Where yt is the actual value, and εt is the random error at the time period t. φi(i =
1, 2, . . . , p) are the model parameters and c is a constant.

MA(q), or MA model of order q, use past errors as opposed to past values. An MA(q)
model can be expressed as [2]:

yt = µ+

q∑
j=1

θjεt−j + εt = µ+ θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q + εt, (2.6)

Where µ is the mean of the series, and θj(j = 1, 2, . . . , q) are the model parameters.
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AR and MA models can be combined to form a more general class of time series models
known as ARMA models. The orders of an ARMA(p, q) model refer to p autoregressive terms
and q moving average terms. An ARMA(p, q) model can be expressed as [2]:

yt = c+ εt +

p∑
i=1

φiyt−i +

q∑
j=1

θjεt−j (2.7)

ARMA models are usually manipulated using the lag (or backshift) operator notation.
It is defined as Lyt = yt−1. Polynomials of lag operators or lag polynomials can represent
ARMA models as follows [2]:

AR(p) model: εt = φ(L)yt (2.8)
MA(q) model: yt = θ(L)εt

ARMA(p, q) model: φ(L)yt = θ(L)εt,

Where φ(L) = 1−
∑p

i=1 φiL
i and θ(L) = 1 +

∑q
j=1 θjL

j.

The models described above can only be used for stationary time series. In practice, a
lot of time series exhibit non-stationary behavior, which is the reason why the Autoregressive
Integrated Moving Average (ARIMA) model was proposed. It is a generalization of an ARMA
model that includes the case of non-stationary time series by applying seasonal differencing
of the data points.

Mathematically, the formulation of an ARIMA(p, d, q) model using lag polynomials is as
follows [2]:

(
1−

p∑
i=1

φiL
i

)
(1− Ld)yt =

(
1 +

q∑
j=1

θjL
j

)
εt, (2.9)

i.e.φ(L)(1− Ld)yt = θ(L)εt

Here, d controls the level of differencing. d = 0 reduces to an ARMA(p, q) model. Note
that the seasonal difference applied in ARIMA is always of first order.

Finally, the Seasonal ARIMA (SARIMA) model generalized ARIMA to deal with sea-
sonality. A time series that exhibits seasonality will contain variations that occur at specific
regular time intervals. For example, temperatures have both a daily seasonality because
it is colder during the night and a yearly seasonality because it is warmer during summer.
SARIMA models are generally termed as SARIMA(p, d, q)× (P,D,Q)s, where:

• (p, d, q) are the parameters of the non-seasonal part of the model

• (P,D,Q) are the parameters of the seasonal part of the model

• s is the number of observations that corresponds to one season

Note that setting (P,D,Q) to 0 reduces to an ARIMA(p, d, q) model.
The formulation of a SARIMA(p, d, q) × (P,D,Q)s model using lag polynomials can be

found in [2].
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Chapter3 Contributions

The goal of this chapter is to describe a novel outage detection technique that leverages
Internet Background Radiation. This solution can study thousands of different time series
in real-time to detect outages using statistical forecasting methods on the number of unique
source IP addresses. The network telescope that was used to collect the IBR data used in
this chapter is the UCSD network telescope1, which is operated by CAIDA.

Section 1 is going to describe how this data set is structured, and will describe the data
that can be extracted from it. Section 2 discusses the current method used to detect outages.
Section 3 describes how I have modeled the data, and Section 4 explains how this model can
be used to detect outages. Section 5 summarizes and evaluates the obtained results, and
Section 6 critiques them.

1. Data set

CAIDA’s data set contains more than 60 000 time series representing the number of
unique source IP addresses that contacted their network telescope. These time series can be
divided into four categories:

• Continents

• Countries

• Regions

• Autonomous systems

The first three have been gathered using the IP geolocation service Net Acuity [21], while
the last one has been created using an ASN lookup. An important note is that some time
series can be included inside others. For example, the time series of all the different regions
of a country will be aggregated to form the time series of this country.

At the temporal level, they have been gathering data for more than 10 years. Data can
also be sampled at different time intervals: one point of data every minute, 5 minutes, hour,
or day. In [8], they describe how they used anti-spoofing heuristics and noise reduction filters.
To remove large-scale spoofing, they looked for sudden spikes in the number of unique source
IP addresses, and they applied a set of filters to remove what they identified as spoofed
traffic. Some of these filters include unassigned protocol numbers, IP addresses ending in .0
or .255, or packets where the IP address originated from a network telescope.

2. Current detection method

The method that CAIDA currently uses to detect outages is to use a history sliding
window of a week to compute two linear thresholds: one for warnings (25%), and one for

1https://www.caida.org/projects/network_telescope/
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Figure 8: Overview of two different techniques that can be used to detect sudden drops on a
time series

(a) Fixed thresholds (b) Dynamic thresholds

critical errors (10%). This process is illustrated on figure 8a. The main drawback of this
technique is that it does not adapt to the analyzed signal. On figure 8a, the green signal has
a clear day and night seasonality, but the fixed thresholds that CAIDA use do not account
for it. As a result, an outage occurring during the day (the local maxima) will be harder to
detect that an outage occurring during the night.

The technique developed in this document aims at having a detection algorithm closer to
the one presenter on figure 8b, in which the different characteristics of the time series will be
accounted for. As a result, our technique will be able to use the different statistical properties
of the time series to create a dynamic threshold instead of a constant one.

3. Time series modeling

This section describes how time series analysis and forecasting techniques were used to
model time series of the number of unique source IP addresses.

The solution that I have chosen to use is SARIMA, since it is one of the more commonly
used techniques for time series analysis and because its low computing time. Indeed, the
objective of this solution is to analyze thousands of time series in real-time, and it needs to
have a low computing time to achieve that. A viable alternative would have been to use
signal processing techniques such as wavelet transforms but they are much more complex
than ARMA-based techniques, which is why SARIMA has been chosen.

The time series on figure 9 will be used as a common thread to illustrate the different steps
involved in time series modeling. It showcases how the amount of IP addresses from Egypt
evolved during the Egyptian revolution in 2011. The dashed black vertical lines indicate when
the government censored the Internet in response to the protests that were happening [9].
This case is also interesting because the outage is followed by a time period in which the
statistical properties of the time series differ from normality before going back to their usual
state. Here, it amounts to an increase in mean and variance.

3.1 Preprocessing

The preprocessing part ensures that the time series is suited for predictions. The analyzed
time series are separated into three different sets:

1. Training set: the set that will be fed to the ARMA model to create the model,

2. Validation set: the set that will be used to find the best p and q for the ARMA model,
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Figure 9: Time series of the evolution of the number of unique IP addresses coming from
Egypt over time
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3. Test set: the set that will be analyzed using the model found during the validation
period.

The separation of the different sets is illustrated by the blue dashed vertical lines on
figure 10.

The training set serves as a baseline for our future predictions. As a result, we need to
ensure that it is representative of the normal state of the time series, and that it does not
contain any events that might bias the predictive model. We apply two different cleaning
strategies to the training set.

The first one consists of replacing the training set by the result of the Median Absolute
Deviation (MAD) of the training set and of the previous weeks. MAD is a robust non-
parametric measurement of the statistical dispersion that will remove outliers from the data.
It also has the added benefit of filling missing data in the training set by using data from the
time series, as the alternative would be to use interpolation methods that do not necessarily
account for the different trends present in the data.

The second strategy is to normalize the median and the variance of the training set to
correspond to that of the validation set. By doing so, we ensure that the evaluation of the
quality of the ARMA model is going to be as accurate as possible. The normalization is
executed on the validation set and not on the test set because the test set is not supposed to
be known in advance, as any adjustment to resemble the test set would bias our results.

As stated in Section 3.2, time series need to be stationary in order to obtain good predic-
tions with ARMA-based models. As a result, we now need to work with two different time
series: the real one, that contains the original data, and the differenced one, that is going
to be stationarized. Here, the time series presented on figure 10 is not stationary for the
following reasons:

1. Inconsistent mean over time

Figure 10: Training, validation, and test set separation on the Egyptian dataset

2011-01-12

2011-01-15

2011-01-18

2011-01-21

2011-01-24

2011-01-27

2011-01-30

2011-02-02

2011-02-05

2011-02-08

Time

0

200

400

600

800

Nu
m

be
r o

f u
ni

qu
e 

so
ur

ce
 IP

Training Validation Test
Inverted Predictions vs data (order = (4, 1))

Real signal

17



2. Inconsistent variance over time

3. Presence of a trend in the data (day/night cycle)

Figure 11: Autocorrelation functions of the European time series [remove conf int]
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Stationarity can be achieved through finite differencing. A handy way to identify trends
in the data is to look at the Autocorrelation Function (ACF) of a time series. An ACF plots
the correlation between points separated by various time lags. As a result, a trend of n points
in the original time series will be seen as a positive correlation on the ACF. Figure 11a is the
ACF plot of 8 days of the European time series. The blue cone is a 95% confidence interval.
The data is sampled at a granularity of 5 minutes, which means that a day amounts for
288 data points and that a week amounts for 2016 of them. The red vertical lines highlight
when a day has passed, and the blue line highlights when a week passed. The fact that the
autocorrelation is maximal after exactly one day teaches us that this time series contains a
daily trend. To remove it, we can apply a finite difference of a day to the time series and plot
a second ACF to see if a trend is still present in the data. Figure 11b shows this second ACF.
The daily trend is gone since local maxima do not appear every day anymore, but this figure
teaches us that a weekly trend is still present in the data. Once again, it is possible to apply
a finite difference of a week to the original time series, and to plot its ACF. The correlation
now oscillates around 0, which implies that there is no significant trend in the data anymore.
It is fair to assess that there might be longer trends such as monthly or yearly. However, one
of the underlying assumption of finite differencing is that the data from a cycle ago is similar
to the one in the current period. That hypothesis seems reasonable for a duration of a week
but the quick changes that networks and the Internet undergo makes it harder to justify the
usage of a longer trend.

Let’s now address the normalization of the mean and the variance. A finite difference
of an order of a week often stabilizes both of these statistical properties. Indeed, moving a
constant time series with a weekly trend by a week results in the same time series.

Once the finite difference has been applied, it is possible to determine if the resulting time
series has become stationary using the augmented Dickey-Fuller test. If the time series is still
not stationary, it is possible to apply additional finite differences until it becomes stationary.

At this point, the real time series has a clean training set, and the differenced time series
is stationary. It is now possible to look for the best ARMA model.

3.2 Model evaluation and selection

The goal of this section if to find the best p and q parameters to use for the ARMA model.
As a reminder, increasing p or q will lead to an increase in the number of autoregressive or
moving average that are going to be used to make an accurate prediction. Predictions are
more accurate on a stationary data set, which means that the differenced time series is going
to be used for this section.
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The selected model is going to be the one with the lowest RMSE, which was described
in Section 3. The reason why this regression metric has been chosen is because it penalizes
extreme errors, which means that models with predictions far from the truth are going to
have a worse result that models that are close to reality. Lastly, predictions are going to
be computed using walk-forward validation, which is a process where the following steps are
executed:

1. An ARMA(p, q) model is going to be created with a list of values stored in a variables
called history,

2. This model is going to be used to compute predictions for the next set of points,

3. The real values of this set of points are going to be included inside the history variable,

4. Repeat from step 1 until the entire data set has been iterated through, then compute
the RMSE of the real values versus the predicted values.

Walk-forward validation is used because we want to evaluate the capacity of our model
to predict a few values rather than its capacity to predict multiple days at a time. Indeed,
having a good short-term prediction makes it possible to detect sudden changes, i.e. outages.
Additionally, the fact that our model is constantly fed with new data (step 3) will ensure that
our model will learn from the new values of the time series, and that the predictive process
can be used for a very long time. Once the predictions are made, we end up with results
like the ones presented on figure 12, where the black line and the gray interval represent the
predicted values and their confidence interval. A better model with a lower RMSE will lead
to a smaller confidence interval.

Figure 12: Predictions obtained on the validation set using walk-forward validation
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3.3 Preserving the integrity of the model

As stated earlier, the training set has been cleaned using data from the preceding weeks.
However, the following problems still remain for the validation and the test set:

1. Missing values need to be filled to have a valid history of values that will be used to
create future models

2. Extreme values will bias future predictions

3. Incorporating outages into the history of the model will bias the future predictions

The solution that has been used to solve is three problems is inpainting. Inpainting is the
action of adding the predictions of the ARMA model inside the history of values that are
used to create to model as opposed to missing or extreme values. Indeed, doing so ensures
that local biases will not affect future data.
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4. Outage Detection

Now that we know the best model for a given time series, it is possible to try to analyze
it and to try to detect outages. We consider that an outage is occurring at a time t if the
current point on the real time series is lesser than the lower bound of the confidence interval
of the prediction. If an outage is detected, a vertical line is going to be displayed on the
figure. The different colors of the vertical lines represent different thresholds that are relative
to the following distance:

distance = (predicted− real)/(predicted− lower), (3.1)

Where predicted is the predicted value, real is the actual value, and lower is the value of
the lower bound of the confidence interval of the predicted value. A distance greater than
1 means that the real value is outside of the confidence interval of the predicted value. The
different colors correspond to the following thresholds:

• Yellow: 1 < t < 1.5

• Orange: 1.5 < t < 2

• Red: 2 < t < 5

• Magenta: t > 5

The result of our outage detection algorithm can be seen on figure 13.

Figure 13: Outage detection during the Egyptian revolution
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Here, the entirety of the outages is covered by alarms from our outage detection algorithm,
as the predicted values are far above the real values. The period that follows the outage is
not considered to be an outage because the real values are greater than the predicted ones.
The few colored vertical lines that are outside of the outage period are considered to be false
alarms. Lastly, it is interesting to note that the times where alarms were raised (i.e. alarms)
will not be integrated into the history of the model, as the inpainting will integrate the
predicted values instead. As a result, the outage is not integrated inside the data, which can
be seen by the fact that the predicted time series does not decrease a week after the start of
the outage.

Now that we know how to detect outages, it is possible to look at what information we
extract from these time series and how their predictions are evaluated.
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Figure 14: Example of a tweet announcing an outage (source)

5. Results

This section describes how we gathered outages to form a ground truth, and how these
events were then analyzed to evaluate the quality of our outage detection algorithm.

Our ground truth is composed of 18 different test cases. Elements from the ground truth
were gathered from the literature [9] and from Internet Intelligence [22], Oracle’s twitter feed
for network events. These feeds inform us where and when a potential outage is occurring.
An example can be found on figure 14, where an analysis of traceroute measurements and of
BGP routes revealed that the Iraqi government censored the Internet in response to protests.

An event can only be divided into ground truth events. For example, the Egyptian
revolution is separated into several events that have different spatial granularities, namely
country, regions, and autonomous systems, and that have a different number of unique source
IP addresses per 5 minutes.

These different events try to evaluate our solution on different aspects, namely:

1. Time series with a low number of unique source IP addresses,

2. Time series with extreme values in the data,

3. Time series with missing values.

A complete breakdown of the different events and of their results can be found in Section 1
of the appendix.

Our solution is then evaluated using a Receiver Operating Characteristic (ROC) curve,
which evaluates a binary classifier by plotting the True Positive Rate (TPR) over the False
Positive Rate (FPR). Here, a true positive is defined as a 1 hour time bin that is part of an
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outage and that contains at least one alarm. A false negative is a 1 hour time bin that is not
part of an outage and that contains at least one alarm. In other words, we measure the ability
of our solution to identify each hour of an outage as being part of an outage. The ROC curve
is presented on figure 15. The reason why there are only thresholds on the leftmost part of
the ROC curve is because I have only plotted thresholds that were already outside of the
99% confidence interval. Some interesting intervals include the fact that 63% of 1 hour time
bins containing outages are identified as such with less than 1% of false positives, and that
79% of 1 hour time bins containing outages are identified as such with about 18% of false
positives. These results depend on the way the ground truth has been constructed, which is
going to be expanded upon in the discussion section.

Figure 15: ROC curve of the ability of our classifier to detect outages
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6. Discussion

This section describes the limitations of our solution, and what could be improved.
The part that needs to be improved the most is the ground truth. I originally constructed

this dataset for testing purposes, which means that I intentionally included edge cases that
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are difficult to predict. As a result, the ROC curve presented on figure 15 might be biased
by the fact that the outages contained inside the ground truth might not be representative
of the majority of outages. For example, some examples have a number of unique source IP
addresses received per 5 minutes that is lesser than 10, which is clearly a case where we have
to wonder if there is enough data to make meaningful predictions. However, I included a
lot of them because I have wanted to be able to determine what is ‘too little’, and I figured
that the best way to quantify this would be to experiment with more time series. In order
to create a realistic ground truth, I intend to systematically add every event from a dataset
such as Internet Intelligence [22], and I plan to make multiple ROC curves with different
classes of time series. Time series will be distributed into classes based on the median of the
number of unique source IP addresses.

I also intend to analyze each outage from different spatial perspectives. The purpose is
twofold. Firstly, it would allow me to be able to compare how the accuracy of my solution is
impacted by a lower amount of unique source IP addresses. Secondly, it would allow me to
try to localize outages more precisely. An example is the Brazilian electricity outage that is
described in Section 1. The news outlets taught us that the outage occurred in the northern
part of the country, and I would like to determine if my solution can precisely detect which
regions were affected, and which were not.

Lastly, one of the current problems is that the evaluation of my solution did not come
with a comparison to already existing outage detection tools. CAIDA recently provided us
with a dataset that regroups outages captured from multiple data sources (namely pings, and
BGP data) and I would like to systematize the analysis of all of these events to see which
types of events are detected by my solution, as it might give us insight into what would be
interesting to add to our solution in the future.

23



24



Chapter4 Conclusion

The goal of this chapter is to discuss my internship as a whole. Section 1 will give a summary
of my contributions. Section 2 will propose some perspectives for future additions. Finally,
Section 3 will contain my personal feedback for this internship.

1. Contributions

This document introduces a technique that uses time series analysis to detect outages
using Internet Background Radiation, a data set that records unsolicited traffic sent to unused
collections of IP addresses. To do so, time series have been modeled using ARMA-based
techniques, which are linear statistical methods. Robust statistical methods have then been
used to get a prediction interval that was used to determine if an outage was occurring or
not. However, this solution is so generic that it can be applied to any data set that can
be modeled as a time series. For example, figure 16 illustrates how the Japanese Internet
infrastructure was impacted by the 2011 earthquake. Indeed, the traffic variations can also
be represented as time series with different trends that could be analyzed.

Figure 16: Japanese traffic for the March 2011 earthquake, Miyagi prefecture (top) and
nationwide (bottom) [7]
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2. Perspectives

Now that our outage detection model has been developed, It is expansively evaluate it by
trying different scenarios. It will then be time to compare it with different outage detection
techniques to see what kind of outages are detected by our solution, and how we can try to
capitalize on it. Ideally, it would be nice to correlate our results with different data sources
to create a monitoring system capable of leveraging multiple data sources to detect outages
more efficiently. It might also be interesting to expand to different data sets such as the one
presented on figure 16, or to active probing measurements such as latency or loss ratio.

3. Feedback

This internship has been enlightening at both a professional and a personal level. As an
aspiring researcher, the opportunity to do research in a different team was extremely useful
as it gave me a new look on what research could be. I was blessed with the chance to be
supervised by very different researchers from very different worlds.

The only regret that I have is that I cannot help but feel like I could have done much
more, and that the internship ended too soon. However, I realize that this feeling is very
common in research. I would like to take this opportunity to renew my thanks to the many
people that were involved in my internship.
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Glossary

AR Autoregressive model. TODO description. 13, 14

ARIMA Autoregressive Integrated Moving Average: A statistical method used for time
series analysis and forecasting.. 14

ARMA Autoregressive Moving Average. TODO description. 14, 16–19, 25

AS Autonomous System: A set of IP routers under a single administrative authority.. 10,
11

BGP Border Gateway Protocol: The de facto inter-domain routing protocol.. 8

DDoS Distributed Denial of Service: attack in which multiple compromised computer sys-
tems attack a target and cause a denial of service for users of the targeted resource..
9

IBR Internet Background Radiation: A data source that contains a list of packets that
reached a darknet.. 3, 8, 10, 11, 15

IGP Interior Gateway Protocol: A routing protocol that is used within an AS. Most common
examples: RIP, OSPF, and IS-IS.. 8

IP Internet Protocol: The main communications protocol that allows a host to reach a
destination solely based on its IP address.. 9

IS-IS Intermediate-systems to intermediate-systems: A link-state routing protocol used as
an IGP.. 8

ISP Internet Service Provider: Company that provides customers with Internet access.. 8,
9

MA Moving Average model. TODO description. 13, 14

NLP Natural Language Processing: area of computer science and artifical intelligence con-
cerned with the interactions between computers and human (natural) languages. (def-
inition from Wikipedia). 6

OSPF Open Shortest Path First: A link-state routing protocol used as an IGP.. 8

RMSE Root Mean Squared Error: regression metric used to determine the accuracy of a
predictive model.. 12, 19

SARIMA Seasonal Autoregressive Integrated Moving Average. TODO description. 14, 16

SLA Service Level Agreements: Contract between an Internet Service Provider and an end
user that defines the level of service expected from the service provider.. 7

TCP Transmission Control Protocol: a connection-oriented transport layer protocol.. 9
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Appendix

1. Results

Figure 17: Egypt - entire country
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Figure 18: Egypt - AS 8452
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Figure 19: Egypt - Al Jizah
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Figure 20: Egypt - AS 24863
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Figure 21: Egypt - AS 36992
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Figure 22: Egypt - Al Gharbiyah

2011-01-12

2011-01-15

2011-01-18

2011-01-21

2011-01-24

2011-01-27

2011-01-30

2011-02-02

2011-02-05

2011-02-08

Time

0

20

40

60

Nu
m

be
r o

f u
ni

qu
e 

so
ur

ce
 IP

Training Validation Test
Inverted Predictions vs data (order = (1, 3))

Real signal
Predicted signal

Figure 23: Egypt - AS 24835
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Figure 24: Egypt - Dumyat
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Figure 25: Egypt - Ban Sa’id
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Figure 26: Brazilian power cut
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Figure 27: Brazilian power cut - Northern region
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Figure 28: Syrian exams 2018
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Figure 29: Syrian exams 2017

2017-05-16

2017-05-18

2017-05-20

2017-05-22

2017-05-24

2017-05-26

2017-05-28

2017-05-30

2017-06-01

Time

0

20

40

Nu
m

be
r o

f u
ni

qu
e 

so
ur

ce
 IP

Training Validation Test
Inverted Predictions vs data (order = (1, 1))

Real signal
Predicted signal

Figure 30: Iraq protests
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Figure 31: Azerbaijan
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Figure 32: Democratic Republic of the Congo
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Figure 33: Gambia
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Figure 34: Gabon
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