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Abstract—Smart Cities need real time information to improve
the efficiency of their transportation systems. In particular,
crowd sensing may help to identify the current speed for each
street, the congested areas, etc. In this context, map matching
techniques are required to map a sequence of GPS waypoints
into a set of streets on a common map. Unfortunately, most
map matching approaches are probabilistic. We propose rather
an unambiguous algorithm, able to identify all the possible
paths that match a given sequence of waypoints. We need an
unambiguous identification for each waypoints set. For instance,
the actual speed should be assigned to the correct set of streets,
without error. To identify all the possible streets, we construct the
set of candidates iteratively. We identify all the edge candidates
around each waypoint, and reconstruct all the possible sub-routes
that connect them. We then verify a set of constraints, to eliminate
impossible routes. The road segments common to all computed
routes form an unambiguous match. We evaluate the matching
ratio of our technique on real city maps (London, Paris and
Luxembourg). We also validate our approach with a real GPS
trace in Seattle.

Index Terms—Smart Cities; unambiguous map matching;
crowd sensing; GPS traces; merging heterogeneous datasets

I. INTRODUCTION

The concept of Smart City refers to modern cities relying
on ICT for increased efficiency [1]. A myriad of deployed
devices allow cities to perform traffic light management, traffic
congestion avoidance and smart transportation. Based on the
produced data, the smart city services can exploit a real time
road map (e.g. speed, congestion level). In particular, dynamic
route planning needs real time traffic conditions to guide
vehicles and users through the optimal route [2]. Yet, deploying
thousands of traffic sensors is particularly expensive.

Participatory sensing [3] relies on individual bodies to collect
a large dataset of measurements. Unfortunately, each participant
provides independent sequences of measurements, which have
to be merged to construct a consistent, real time view of the
whole road or street network. A map matching algorithm aims
to map all these distinct traces onto a common base map, so that
we create a global dataset from a set of individual traces [4].
Openstreetmap1 is commonly used as a base map [5].

Map matching algorithms exploit an ordered sequence of
waypoints (geographical coordinates) obtained with a cellular
or GPS positioning system. Thus, each point is riddled
with measurement errors. Typically, GPS-enabled smartphones
provide an accuracy of 4.9 m in ideal conditions (open

1http://www.openstreetmap.org

sky) [6]. Most map matching algorithms identify the most
probable path corresponding to a given individual sequence.
However, trajectory planning requires a precise mapping of
congestion information on the map for highly accurate travel
time estimation.

Because acquiring a GPS location is very energy consuming,
participatory sensing shall benefit from a low sampling rate
GPS trace. However, reducing this sampling rate negatively
impacts the accuracy [7], thus jeopardizing the identification
of the most probable route for a given trace. For a dense map,
multiple similar paths may exist between two data points, and
no argument can fairly differentiate the actual path from its
alternative.

In this paper, we propose an unambiguous map matching,
to identify all the possible paths corresponding to a sequence
of waypoints. Indeed, a probabilistic method is to our mind
insufficient: identifying the wrong route implies that a bias is
created. For instance, an urban planner may need to count the
actual number of vehicles for a specific street. Here we choose
not to resolve ambiguities. We rather not consider segments
between waypoints that we can not match definitely.

To the best of our knowledge, we propose the first unam-
biguous map matching method. The contributions of this paper
are:

1) we propose a map matching algorithm for sparse traces,
enabling real-time mapping with a low computation time;

2) instead of a probabilistic method, we adopt here an un-
ambiguous approach: we consider that the map matching
has partially failed when several path candidates are
obtained, and we thus identify the subroute which was
used for sure by the trace ;

3) we thoroughly evaluate our solution, on emulated GPS
traces on the London, Paris and Luxembourg maps. We
always identify the initial path (no false negative), while
reaching a small set of candidates (false positive), with
a reasonable sampling period (under 50s).

4) we illustrate the performance of our algorithm on
real GPS traces. We show its robustness to increasing
sampling rates in the face of real-life GPS measurement
errors.

II. RELATED WORK

Map matching is the process of identifying the route taken
by an entity, by only analyzing a sequence of its geolocated
measurements. Typically, a user or a device activates its GPS,



and takes a measurement periodically to reconstruct its path
(i.e. on or off-line). Map matching is extensively used for
crowd-sensing applications in smart cities. For instance, Li et
al. [8] infer traffic conditions after using map matching on a
large dataset of GPS traces. In particular, the authors extract a
repetitive pattern, where traffic peaks are mechanically highly
probable during the peak hours.

A. Trajectory completion

Inferring road maps from sparse GPS traces has received
much attention in the literature. Liu et al. [9] compared the
accuracy of map inference from highly instrumented (and
expensive) measurements and from large-scale low-cost GPS
traces. They confirmed that sampling intervals should be kept
short to provide high accuracy.

Li et al. [10] extract first a skeleton from the data points,
and construct a junction network to unify all the trajectories.
This way, each individual trajectory can be mapped to the
same, common base map. We do not have the same objective
in this paper: we have a common base map and our objective
is rather to map individual traces to an existing map, serving
as a ground-truth.

B. Map matching

Existing map matching approaches are classified into the ge-
ometric, topological, probabilistic, and advanced methods [11].

Geometric solutions only consider geometric properties (e.g.
Euclidean distances) while topological approaches also consider
the cartography / connectivity information. Yuan et al. [12]
construct a candidate graph, with all the edges close to the
GPS measures. Weights in the graph are chosen proportional to
their Euclidean distance from the data point. A voting scheme
allows the algorithm to identify the most probable candidate.
They evaluated the accuracy of their technique on the traces
of 1,000 taxis in Beijing, which have heterogeneous sampling
rates (i.e. up to a few minutes), reaching a maximum of 73%
correct matching for sampling intervals of 3.5 minutes.

Probabilistic methods identify an error region, derived from
the GPS inaccuracy. Then, the device is mapped to the roads
present in this error region. Szwed et al. [13] use a hidden
Markov model to identify the most probable mapped path when
using multiple sensors (e.g. GPS, Wi-Fi). Expectedly, from the
experiments conducted for 20 GPS traces only (modified by
introduction of noise and/or downsampled), the longer and more
noisy the trace (i.e. as anticipated for real-world scenarios), the
less reliable the algorithm. Hu et al. [14] also use the speed
and direction information to prune the set of path candidates.

Chen et al. [15] analyzed a multimodal dataset, with a
collection of different sensors (GPS, Bluetooth, accelerometer).
They propose to use map matching to infer the mode of
transportation, in order to split a trip into a set of individual
mono-modal paths. Even cellular positioning data are used
with a hidden Markov Model for map matching [16], with a
much higher location inaccuracy.

In this paper, we rather aim to identify all the paths which
respect the time delay constraint, and which may be candidate

TABLE I: Notation used in the paper
Symbol Signification
Egps maximum GPS error for a data measurement
σgps standard deviation of the GPS error (Gaus-

sian distribution)
∆speed security coefficient of speed excess autho-

rized for the trace
Z = {Zi}i∈[0,|Z|] GPS trace, with |Z| data points
tail(e) / head(e) tail (respectively head) of the edge e
C(e) cost (in seconds) to join tail(e) and

head(e)
Cand(Zi) set of candidate edges for the measurement

point Zi

Outgoing(Zi) outgoing edge candidates for the measure-
ment point Zi

Incoming(Zi) incoming edge candidates for the measure-
ment point Zi

R = {ei}i∈[0,k] a valid route from the edge e0 to ek
subRoute(ei, ej) valid subroute between the candidate edges

ei and ej
D(Zi) disk centered on Zi with a radius Egps
δcell size of a cell in the grid in degrees of latitude

and longitude

for the given set of GPS data points. Our proposal enters in the
class of probabilistic methods, targeting high accuracy even at
low sampling rates.

III. MODELS AND ASSUMPTIONS

We analyze the case of a vehicle equipped with a GPS
measuring device and moving on a given road network. The
sampling frequency of the GPS can be adjusted to generate
these measurements (i.e. latitude and longitude coordinates)
at a constant rate T . A GPS trace is a sequence of such
measurements with T seconds intervals from the start until the
end of the journey. We use the term true route to refer to the
real route used by the vehicle during its journey. Our goal is
to reconstruct the true route from the issued trace.

Let us model the road network with a directed graph G(V,E),
V denoting the set of vertices, and E the set of edges. Each
road intersection corresponds to a vertex in the graph. Each
road segment is an edge between the corresponding vertices. To
each vertex is associated a geographical coordinate, and a road
segment may be subdivided into small segments to preserve
the geographical shape of the road. The weight of an edge is
the time (in seconds) elapsed to join the two corresponding
vertices, at the speed limit of the road section. We call a
couple of two consecutive data points, the tail and the head
vertices, respectively. Besides, we denote by path a sequence
of connected vertices and edges in the map.

We use here Openstreetmap as base map, since this opendata
project provides a free access to a huge and accurate collection
of road networks.

IV. MAP MATCHING ALGORITHM

Our objective is to map a trace to a set of valid routes
that are proven to be feasible for the journey. Then, we extract
the set S of all shared edges among valid routes. We prove
that ∀e ∈ S, e ∈ true route. We use the notation described in
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Fig. 1: Map Matching algorithm process

table I. Our map matching algorithm relies on four pipelined
steps (Figure 1):

1) Preprocessing map data: we first organize the map into
a regular grid to accelerate the identification of edges
close to a given location;

2) Selecting edge candidates for each measurement:
each measurement Zi in the trace allows us to ap-
proximate the actual position Pi to a disk centered
on Zi with a radius Egps (which is fixed to consider
the measurement error). Then, we identify all the edge
candidates (Cand(Zi)) that correspond to Zi. More
precisely, any edge that crosses the boundary of the disk
is an edge candidate. We make the distinction between the
incoming (their tail is outside the disk) and the outgoing
(their head is outside the disk) edges.

3) Identifying valid routes from the set of edge candi-
dates: we then have to compute routes, which include
one edge candidate for each Zi, and which respect
a time delay constraint. For each pair of consecutive
measurements Zi and Zi+1, a Breadth First Search (BFS)
calculates all the possible subroutes i.e a sequence of
edges that start with an incoming edge candidate for
Zi and finish with an outgoing edge candidate of Zi+1.
The cost of a subroute must respect the elapsed time
between measurements Zi and Zi+1. Finally, the different
subroutes are assembled and we verify the end-to-end
time delay constraint.

4) Extracting common segments for all the possible
routes: we identify the edges which are for sure on
the journey, constituting a set of common segments. The
longer the segments, the more accurate our algorithm:
ideally one single segment would cover the whole route
meaning that a single option matches our constraints.

A. Pre-processing

Identifying the edges close to a given location would require
to fetch the whole graph, and to compute the distance of each
of them. Thus, to accelerate the computation, we organized the
map into geographical cells, i.e. rectangles of δcell degrees of
width and height. We compute for each edge its set of cells by
using a modified version of the Bresenham’s algorithm [17].
More precisely, an edge belongs to a cell if both of its end-
vertices lie inside the cell, or if the edge crosses its boundaries.
When searching for all the edges at a maximum distance of a
specific location, we just have to scan all the edges belonging
to the cells around the location.

B. Selecting edge candidates for each measurement

GPS typically follows a Gaussian distribution with standard
deviation σgps [18]. Thus, the true position of the vehicle may
be located anywhere in a disk centered on the measurement
(Zi) with the radius:

Egps = 3× σgps (1)

which accounts for a 99.9 % certainty that the disk area contains
the true position Pi.

An edge candidate is any edge that allows accessing and/or
exiting the area that contains the true position of the vehicle.
In other words, any edge that crosses the disk centered at
Zi. Thus, Zi and the closest point of an edge candidate are
separated by a distance smaller than Egps. Let us denote by
d(u, v) the Euclidean distance between the points u and v. An
edge e is a candidate if one of the following conditions holds:

1) the head is outside the disk: e in an outgoing edge
candidate;

(d(tail(e), Zi) ≤ Egps) ∧ (d(head(e), Zi) > Egps)
(2)

2) the tail is outside the disk: e is an incoming edge
candidate;

(d(head(e), Zi) ≤ Egps) ∧ (d(tail(e), Zi) > Egps)
(3)

3) both the head and tails are outside the disk but the edge
intersects the disk: e is both an incoming and outgoing
edge candidate.

(d(proj(e, Zi), Zi) < Egps) ∧ (d(tail(e), Zi) > Egps)
∧ (d(head(e), Zi) > Egps) (4)

where tail(e) and head(e) denote the tail and head of the edge
e respectively, and proj(e, Zi) denotes the projection of Zi on
the edge e.

C. Constructing valid routes from a list of edge candidates

We have now to infer the global route which corresponds to
a sequence of edge candidates, and which also respect the time
delay constraint. Formally, a route R is an ordered sequence
of edges E = {ei}i∈[0,k] such that ∀i ∈ [0, k− 1], head(ei) =
tail(ei+1).

We make a distinction between:
• A True route: this corresponds to the set of edges which

were followed during the journey;
• Valid routes: all the possible routes which respect the

constraints. The true route is included in the set of valid
routes, thus preventing us from a false negative.



We propose an iterative approach, where the route is grown
step by step, appending subroutes from one measurement to the
next. More formally, a subroute is a sequence of consecutive
edges such that:

subRoute(ei, ei+1) = {ek | head(ek) = tail(ek+1)}
s.t. ei ∈ Incoming(Zi) ∧ ei+1 ∈ Outgoing(Zi+1) (5)

Remark 1: For the first pair of measurements (Z0, Z1), a
subroute begins with an outgoing edge candidate of Z0. This
exception is due to the fact that the first measurement Z0 might
not possess any incoming edge candidate, since the journey
has started inside the disk, possibly in a dead-end street.

To compute all the valid routes, we propose an iterative two
step approach:

1) calculating subroutes, for a pair of consecutive measure-
ments. We also verify that they are valid concerning the
timestamps (time delay constraint). Typically, in Figure 2,
the subroute (a3, a4, a5, a6, a7) is a valid subroute from
Z1 to Z2.

2) appending the corresponding subroute to all the al-
ready computed valid routes, and then verifying the
end-to-end delay constraint. In Figure 2, the subroute
(a3, a4, a5, a6, a7) can be combined to the valid route
(a2, a3), creating a new route (a2, a3, a4, a5, a6, a7) from
Z0 to Z2.
Remark 2: We later retract the new route until we reach
an incoming edge of measurement Z2. In our example
we would obtain (a2, a3, a4, a5, a6) after retracting the
route. We explain why in the next subsection.

When the algorithm reaches the last measurement ZN , all the
valid routes are identified.

1) Constructing the subroutes: The objective now is to con-
struct all the possible subroutes between two edge candidates.
We have to verify that a subroute is valid, i.e. the vehicle is
able to join the two measurement points without exceeding the
speed limit.

To identify all the valid subroutes, we apply a Breadth
First Search (BFS) approach starting from each incoming edge
candidate for the measurement Zi, and stopping after either of
the two conditions:

1) an outgoing edge candidate for the measurement Zi+1 is
visited (a valid subroute is discovered). We will explain
below why we have to stop at an outgoing edge candidate;

2) the cost of the subroute exceeds the delay constraint (the
exploration has to stop, backtracking to the other edges
to discover). We will explain in the next subsection how
the cost of a subroute is actually computed.

The BFS algorithm evaluates all the subroutes in the graph
starting from every incoming edge e of Zi, such that e
corresponds to the end of a route that was calculated earlier. All
the neighbors are recursively explored, their id being pushed
on top of a stack. In parallel, our algorithm maintains the
minimum time cost to walk the explored subroute to verify
the delay constraint. As soon as an outgoing edge for the

next measurement point is scanned, the stack is saved: a new
subroute was discovered.

When either a subroute has been discovered, or the delay
constraint is violated, the BFS backtracks to the previous neigh-
bor to explore. We implement a simple stack of unexplored
neighbors since we have to make a complete exploration to
detect all the possible subroutes.

Let us consider the example in Figure 2. A valid route
has been constructed up to the head of the edge c1. We
apply the BFS strategy, and we obtain recursively the sub-
routes (c1, c2, a5, a6, a7) and (c1, d1, e1, e2, a7). Assuming
that the subroutes (c1, c2, a5, d3, d4), (c1, d1, d2, d3, d4) and
(c1, d1, d2, a6, a7) have been discarded because they violated
the time constraints.

Remark 3: Please note that we stop the BFS only when
scanning an outgoing edge for Zi+1. If the two measurement
points are very close because of a small sampling period or
large measurement inaccuracies, the two corresponding disks
may overlap, preventing the algorithm from finding a subroute
that ends with an incoming edge at Zi+1.In Figure 2, the disks
of Z2 and Z3 overlap. In particular, the incoming edge a6 of
Z2 for the valid route is after the incoming edge a5 of Z3.
Thus, we cannot compute a subroute that begins and ends with
incoming edges at Z2 and Z3 respectively. On the contrary,
we can safely stop at the first outgoing edge of Z3, which is
always located after the incoming edge of Z2, as demonstrated
below.

Let Zmin be the minimum index such that the disks centered
on Z0 and Zmin respectively do not overlap. Similarly, let
Zmax be the maximum index such that the disks centered on
Z|{Zi}|−1 and Zmax do not overlap. For example, in figure 2,
Zmin corresponds to Z1 and Zmax corresponds to Z1 aswell.

Lemma 1: For any pair of consecutive measurements
(Zi, Zi+1)i∈[Zmin,Zmax], there exists a sequence of connected
edges such that the first is an incoming edge candidate of Zi

and the last one is an outgoing edge candidate of Zi+1

Proof 1: The true route corresponds to a sequence of edges
{ek}k∈[0,|R|−1] in the graph. By construction, at least one edge
of the true route is at a maximum distance of Egps from Zi

(min < i < max). Let Ei = {ek} denote this set, and kmin
be the minimum index. ekmin is an incoming edge for Zi.

Let us prove it by contradiction. If ekmin is not an incoming
edge, ekmin−1 is also in the set Ei, which is impossible since
kmin is minimum. Besides, kmin > 0, since at least one
edge is in the disk centered on Z0 and not in the set Ei, by
construction of Zmin. Thus, ekmin has to be an incoming edge
for Zi.

We demonstrate similarly that an edge ekmax of the true
route is an outgoing edge for Zi+1. Moreover, the incoming
edge for Zi has been traversed before the timestamp Ti
corresponding to the measurement Zi (first arrival in the disk).
Inversely, the outgoing edge has been visited after Ti+1, and
by definition, Ti < Ti+1, thus kmin ≤ kmax.

The sequence of the edges in the true route, from ekmin to
ekmax, forms a valid subroute, which will be scanned by the
BFS.
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Fig. 2: Example illustrating the process of appending subroutes.

Remark 4: We cannot assume that the true route enters in
the first disk, and exits from the last one. Thus, we scan all the
edges inside or crossing the first and last disks. This exhaustive
search increases slightly the computation time, but only for
the first and last measurement points.

2) Verifying the cost of a subroute: We have to compute the
minimum time to travel a corresponding subroute. Thus, we
define the cost for an edge e as the time required to join the tail
and the head vertices with the speed limit of the corresponding
edge.

∀e ∈ E,C(e) = C (head(e), tail(e)) =
d(head(e), tail(e))

speed(e) ∗∆speed
(6)

with speed(e) the speed limit associated to the edge e in the
map, and ∆speed a safety margin to take into account speed
excesses. By extension, the cost of a subroute corresponds to
the sum of the costs of its edges.

Because the exact location corresponding to a measurement
is by definition imprecise, we do not know the exact distance
travelled between two GPS measurements. We know that the
minimum distance is the distance between the intersection
points of the outgoing edge candidate of Zi and the incoming
edge candidate of Zi+1 with the disks D(Zi) and D(Zi+1)
respectively (positions P0 and P1 in Figure 2). Thus, we need
to calculate the cost for the section of the subroute that lies
outside the area enclosed by the disks D(Zi) and D(Zi+1).
This cost has to be below the time between two GPS samples
(Tsampling) for the subroute to be feasible.

In figure 2, for the subroute (a2, a3, a4, a5), this cost
corresponds to the sum of costs from the intersection of a2
with D(Z0) to the intersection of a3 with D(Z1).

Lemma 2: The true route always corresponds to at least one
valid subroute.

Proof 2: Let us consider the true route defined by a sequence
of edges R = {ei}i∈[0,|R|]. Let Pout (resp. Pin) be the
intersection of the last outgoing (resp. incoming) edge in R
with the disk centered on Zi (resp. Zi+1). Pout is by definition
the latest possible position of the vehicle along the true route
at the timestamp Ti, which leads to the measurement Pi.
Similarly, Pin is the earliest possible position for the timestamp

Ti+1. Thus,
∑

ek∈(Pin,Pout)
C(e) ≤ Ti+1 − Ti = Tsampling.

In conclusion, the true route will not be discarded by this
condition, and is discovered with the BFS (lemma 1).

3) Appending a subroute to a valid route: We now have to
assemble the subroute with the set of valid routes to extend
them until the last measurement point. Because we start the
next subroute from an incoming edge (sequentiality constraint),
we cannot assemble the subroute directly. We thus propose to:

1) prune all the edges in the subroute until (i) an incoming
edge for Zi+1 is scanned, or (ii) the end of a valid route
is detected. The second condition holds to still consider
the case for which the two disks overlap, and stopping
earlier the backtracking is more efficient;

2) append this pruned subroute at the end of all the existing
valid routes stopping at the corresponding edge candidate;

3) verify the end-to-end delay constraint for each valid route
created in this way.

Then, the next measurement point will be considered.
We have to verify that the subroute respects the time

constraint: ∑
e∈s

C(e) ≤ i ∗ Tsampling (7)

with s being the sequence of edges in the valid route, from the
last outgoing edge of Z0 until the first incoming edge of Zi.

Remark 5: The first and last measurements in the trace Z0

and Z|Z| respectively, are treated separately because neither can
we guarantee that Z0 possesses incoming edge candidates nor
Z|Z| possesses outgoing edge candidates. Indeed, the journey
could start and terminate at a dead-end street.

D. Computing shared road segments in valid routes

Once all valid routes for the journey are established, we aim
to compute the subset which is common to all the routes: we
are sure that the vehicle has followed these specific edges.

More formally, let V R denote the set of valid routes. We
compute the set of edges S such that:

∀e ∈ S, ∀r ∈ V R, e ∈ r (8)



We use the term correct matching ratio (cmr) to define the
ratio of all edges in S (weighed by their length) to the total
length of the true route:

cmr =

∑
e∈S d(e)∑
e∈T d(e)

(9)

with T being the true route.

V. PERFORMANCE EVALUATION

We carried two different experiments to evaluate our algo-
rithm. In the first experiment, we emulated GPS traces and used
OpenstreetMap2 as a common map. In the second experiment,
we used a real GPS trace from a publicly available dataset [19].

A. Emulated GPS traces

We first evaluate the accuracy of our unambiguous map
matching method by emulating GPS traces. Prior to using the
OSM data for our experiment, we cleaned it from duplicate
entries and missing information. Specifically, we remove all
the isolated vertices, i.e. not part of the largest connected
component. These private or disconnected roads constitute less
than 5% of the vertices of the graph. Finally, we precompute
the grids for the OSM map (a tile corresponds to 0.001◦).

TABLE II: Dataset

Road Network London Paris Luxembourg
Number of vertices 836,271 169,879 27,306
Number of edges 1,637,300 284,246 50,607
Degree 8 6 5

We used 3 different cities (Tab. II) with different character-
istics to evaluate the robustness of our method. For each city,
we generated 500 GPS traces in the following way:

1) we pick randomly two waypoints (A and B), located
approximatively 8km apart;

2) we compute the shortest path from A to B. We emulate
the movement of a vehicle, by following the path with the
speed limit of each segment, as given by openstreetmap.
A sample is saved every 1 second;

3) for each waypoint, we emulate a real GPS measurement,
i.e. the actual location with an additionnal error caused
by the GPS system. The location inaccuracy follows
a Gaussian distribution with a standard deviation of
4.07m [18].

4) we finally subsample the GPS trace with a period
comprised between 1 and 50 seconds. We can thus
compare the different sampling rates: they correspond to
the same journey.

We consider here only regular sampling periods to more easily
interpret the results. Indeed, an irregular sampling would
correspond to a mix of different cases, making the results
more difficult to interpret. Tab. III summarizes our evaluation
setup.

We measured the following metrics:

2https://www.openstreetmap.org/

TABLE III: Evaluation setup

σgps 4.07 m (standard deviation of the GPS chipset)
∆speed 1.2 (safety margin for the speed limit, cf. sec-

tion IV-C2)
δcell 0.001◦ (size of the grid for the precomputation)
Tsamp ∈ [1, 50] (sampling rate of the GPS trace)
CPU Core i7-4600U CPU @ 2.10 GHz

memory 16 GB RAM
software Java 8, Eclipse IDE Oxygen.2 Release (4.7.2)

correct matching ratio: we compute the weighted subset of
edges which are common to all the valid routes (cf.
section IV-D). cmr = 1 corresponds to a perfect match
(i.e. there is only one valid route which happens to be the
true route). Similarly, cmr = 0 means that even though
we did not discard the true route, there exists at least one
valid route that does not share any edge with the rest of
the valid routes.

computation time: time required to compute the set of valid
routes.

We then analysed the effect of road junctions density (i.e.
number of edges) around a specific waypoint on the correct
matching ratio. Figure 3 illustrates the correct matching ratio of
London, Paris and Luxembourg, for sampling periods ranging
from 1 to 50 seconds. The true route is always in the set of valid
routes. In addition, for very small sampling periods, it is often
the only valid route. Consequently, we are able to identify the
whole true route. The accuracy decreases for higher sampling
periods. Above a sampling of 15 to 20 seconds (depending on
the city), some measurement points are far from each other,
and several valid subroutes exist to join them.

Our algorithm is unambiguous and does not pick randomly
one of these possible routes. However, even for very large
sampling rates (one GPS measurement every 50 s), more than
95% of the true route is accurately identified. In the worst case,
for some cities, such as London, we are able to identify 80%
of the true route. In conclusion, our unambiguous algorithm is
very efficient to exploit sparse GPS measurements.

We also identify the metrics that affect the success or failure
of the matching process. We suspect that the number of road
junctions near a given measurement Zi, increases the odds of
computing more subroutes which decreases the probability of
matching Zi to a single route i.e the true route. For London
and Luxembourg experiments, we measured the number of
road junctions at a distance d < 4 × Egps of matched and
unmatched measurements. For each experiment we matched
approximately 12,000 measurements distributed over a dataset
of 500 journeys. We observe in figure 4 that there is indeed
more road junctions near unmatched measurements. Though,
we still need to thouroughly test this hypothesis to be sure it
holds for various road networks.

Figure 5b illustrates the computation time (for London
experiment) when varying the sampling period. Whatever the
conditions, we identify accurately the true route in less than
80ms. Our algorithm is thus efficient for online strategies, where
the reactiveness is of primary importance. We can observe
in figure 5a the average execution time for the three main
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Fig. 3: Correct matching ratio for London, Paris, Luxembourg road networks.
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Fig. 4: Road junction vertices density near matched and
unmatched measurements (R = 4× Egps).

methods of the algorithm. For low sampling periods, we have
many measurement points to consider, which increases the
computation time for computing all edge candidates. Inversely,
large sampling periods imply a larger computation time for
the BFS, to identify all the possible subroutes, and verifying
their cost. The computation time remains below 20ms for a
sampling period of 5 s, which corresponds also to a close to
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Fig. 5: Performance of map matching algorithm based on
execution time.

perfect correct matching ratio.

These results were obtained with emulated GPS traces, whose
parameters (e.g., measurement uncertainty, car speed) remained
fixed throughout the emulation. We thus aimed at validating
our proposition on real-world traces, whose dynamics may
impact our results.
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Fig. 6: Correct matching ratio for Seattle road network using
real GPS trace data.

B. Real GPS trace (Seattle)

We here evaluate our algorithm in a real case scenario, by
using data sampled at 1 Hz using a RoyalTek RBT-2300 GPS
logger during a road trip in Seattle, WA [19]:
• Road Network: The 2009 road network representation

of Seattle, Washington, USA area.
• GPS trace: 7531 GPS points collected over 2 hours of

driving (80 km)3.
• Ground Truth: The true sequence of road segments that

correspond to the GPS trace.
The error in the GPS measurements is not a metric we

control (as for the emulated trace) but is rather due to the GPS
measuring device and environment.

Such real-world measures allowed us to take into account the
dynamics of the road network which would cause the vehicle
to slow down or even halt instead of traveling at the allowed
speed limit for the whole trip.

Figure 6 depicts the performance results of our algorithm
for matching a real GPS trace. The results corroborate the
first part of our evaluation using emulated GPS data. At small
sampling periods (less than 5 seconds), we are almost able
to reconstruct the true route in its entirety. The correct match
ratio decreases to 85% with a sampling period of 50 seconds.

VI. CONCLUSION & PERSPECTIVES

We presented a time-efficient map matching algorithm, to
reconstruct the route from a sequence of data points. We
proposed an unambiguous method: we do not aim to find
the most probable route, but rather to identify the road
segments that were used for sure. This way, we can merge
heterogeneous traces, extracted for instance from a crowd-
sensing application. Thus, our algorithm relies on identifying
candidate edges for each data point, and computing routes
among them which respect a time delay constraint. Our
algorithm is time-efficient, and can be used for real-time

3The details of the trace are available on: https://www.microsoft.com/en-us/
research/publication/hidden-markov-map-matching-noise-sparseness/

situations. Our performance evaluation shows that our map
matching technique unambiguously identifies more than 85%
of the true route for a sampling period up to 50 seconds. When
the data points are too interspaced, our algorithm terminates
with several routes that cannot be differentiated.

In the future, we plan to analyse the impact of the local
topography on the accuracy of the map matching technique.
Obviously, an urban and dense environment can provide several
similar routes, which complicate the matching procedure.
Ideally, we would provide an adaptive method, able to tune
dynamically the sampling rate depending on a set of local
metrics, to reduce the energy consumption of many crowd-
sensing applications.
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